Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2017_51_2_a3, author = {Kh. A. Khachatryan and M. H. Avetisyan}, title = {On solvability of an infinite nonlinear system of algebraic equations with {Teoplitz{\textendash}Hankel} matrices}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {158--167}, publisher = {mathdoc}, volume = {51}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a3/} }
TY - JOUR AU - Kh. A. Khachatryan AU - M. H. Avetisyan TI - On solvability of an infinite nonlinear system of algebraic equations with Teoplitz–Hankel matrices JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2017 SP - 158 EP - 167 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a3/ LA - en ID - UZERU_2017_51_2_a3 ER -
%0 Journal Article %A Kh. A. Khachatryan %A M. H. Avetisyan %T On solvability of an infinite nonlinear system of algebraic equations with Teoplitz–Hankel matrices %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2017 %P 158-167 %V 51 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a3/ %G en %F UZERU_2017_51_2_a3
Kh. A. Khachatryan; M. H. Avetisyan. On solvability of an infinite nonlinear system of algebraic equations with Teoplitz–Hankel matrices. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 2, pp. 158-167. http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a3/
[1] N. B. Engibaryan, “A Nonlinear Problem of Radiative Transfer”, Astrophysics, 1:3 (1965), 158–159 (in Russian) | DOI
[2] N. B. Engibaryan, “A Discrete Model for Nonlinear Problems of Radiation Transfer: Principle of Invariance and Factorization”, Mathematical Models and Comp. Simulations, 27:5 (2015), 127–136 | MR | Zbl
[3] A.Kh. Khachatryan, Kh. A. Khachatryan, “Qualitative Difference between Solutions for a Model of the Boltzmann Equation in the Linear and Nonlinear Cases”, Theoret. and Math. Phys., 172:3 (2012), 1315–1320 (in Russian) | DOI | MR | Zbl
[4] V.S. Vladimirov, Volovich Ya.I. Volovich, “Nonlinear Dynamics Equation in $p$-Adic String Theory”, Theoret. and Math. Phys., 138:3 (2004), 297–309 | DOI | MR | Zbl
[5] V.S. Vladimirov, “The Equation of the $p$-Adic Open String for the Scalar Tachyon Field”, Izv. Mathematics, 69:3 (2005), 487–512 | DOI | MR | Zbl
[6] Kh. A. Khachatryan, M. F. Broyan, “One-Parameter Family of Positive Solutions for a Class of Nonlinear Infinite Algebraic System with Teoplitz–Hankel Type Matrices”, Journal of Contemporary Mathematical Analysis, 48:5 (2013), 189–200 | DOI | MR
[7] A. Kh. Khachatryan, A. K. Kroyan, “On the Positive Solvability of an Infinite System of Nonlinear Algebraic Equations in $l_1$ with Teoplitz Matrices”, Vestnik RAU. Phys. Math. Science, 2015, no. 1, 16–25 (in Russian)
[8] H. H. Azizyan, Kh. A. Khachatryan, “One-Parametric Family of Positive Solutions for a Class of Nonlinear Discrete Hammerstein–Volterra Equations”, Ufa Mathematical Journal, 8:1 (2016,), 13–19 (in Russian) | DOI | MR
[9] H. S. Petrosyan, M. G. Kostanyan, “On Solvability of an Class of Nonlinear Infinity Systems of Algebraic Equations with the Teoplitz Matrices”, Mathematics in Higher School, 10:1 (2014), 35–40 (in Russian)
[10] L. G. Arabadzyan, “On Discrete Wiener–Hopf Equations in the Conservative Case”, Math. Analysis and Applications (Armenian State Ped. University after Kh. Abovyan), 1980, 26–36 (in Russian)
[11] Kh.A. KhachatryanOn Nontrivial Solutions of a Class Convolution Type Nonlinear Integral Equations, VI Russian-Armenian Conferance on Mathematical Physics and Analitical Mechanics (Rostov-on-Don), 2016, 40–41 (in Russian)