Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2017_51_2_a2, author = {K. A. Kerian}, title = {On recovery of a {Franklin} series from its sum}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {151--157}, publisher = {mathdoc}, volume = {51}, number = {2}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a2/} }
TY - JOUR AU - K. A. Kerian TI - On recovery of a Franklin series from its sum JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2017 SP - 151 EP - 157 VL - 51 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a2/ LA - en ID - UZERU_2017_51_2_a2 ER -
K. A. Kerian. On recovery of a Franklin series from its sum. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 2, pp. 151-157. http://geodesic.mathdoc.fr/item/UZERU_2017_51_2_a2/
[1] Ph. Franklin, “A Set of Continuous Orthogonal Functions”, Math. Ann., 100 (1928), 522–528 | DOI | MR
[2] K.A. Keryan, “Uniqueness Theorem for Franklin Series”, J. of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 52:2 (2017), 92–101 | MR | Zbl
[3] K.A. Keryan, “Uniqueness Theorem for Additive Functions and its Applications to Orthogonal Series”, Mathematical Notes, 97:3 (2015), 362–375 | DOI | MR | Zbl
[4] G. G. Gevorkyan, “Uniqueness of Franklin Series”, Mathematical Notes of the Academy of Sciences of the USSR, 46:2 (1989), 609–615 | DOI | MR | Zbl
[5] G. G. Gevorkyan, “Unboundedness of the Shift Operator with Respect to the Franklin System in the Space $L_1$”, Mathematical Notes of the Academy of Sciences of the USSR, 38:4 (1985), 796–802 | MR | Zbl