Discontinuous Riemann boundary problem in weighted spaces
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 38-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Riemann boundary problem in weighted spaces $L^{1}(\rho)$ on $T=\{t, |t|=1\}$, where $\rho(t)={|t-t_{0}|}^{\alpha}$,   $ t_{0}\in T$ and $\alpha>-1$, is investigated. The problem is to find analytic functions $\Phi^{+}(z)$ and $\Phi^{-}(z),\,\,\Phi^{-}(\infty)=0$ defined on the interior and exterior domains of $T$ respectively, such that:  $ \lim\limits_{r\rightarrow 1-0}\|\Phi^{+}(rt)-a(t)\Phi^{-}(r^{-1}t)-f(t)\|_{L^{1}(\rho)}=0, $ where $f\in L^{1}(\rho),\,\,a(t)\in H_{0}(T;t_{1},t_{2},\dots,t_{m})$. The article gives necessary and sufficient conditions for solvability of the problem and with explicit form of the solutions.
Keywords: Riemann boundary problem, weighted spaces, Cauchy type integral, Hölder classes.
@article{UZERU_2017_51_1_a6,
     author = {V. G. Petrosyan},
     title = {Discontinuous {Riemann} boundary problem in weighted spaces},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {38--41},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a6/}
}
TY  - JOUR
AU  - V. G. Petrosyan
TI  - Discontinuous Riemann boundary problem in weighted spaces
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 38
EP  - 41
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a6/
LA  - en
ID  - UZERU_2017_51_1_a6
ER  - 
%0 Journal Article
%A V. G. Petrosyan
%T Discontinuous Riemann boundary problem in weighted spaces
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 38-41
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a6/
%G en
%F UZERU_2017_51_1_a6
V. G. Petrosyan. Discontinuous Riemann boundary problem in weighted spaces. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 38-41. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a6/

[1] N. I. Muskhelishvili, Singular Integral Equations, Noordhoff, Groningen, 1963 | MR

[2] F. D. Gakhov, Boundary Value Problems, Dover, NY, 1990 | MR | Zbl

[3] H. M. Hayrapetyan, “Discontinuous Riemann–Privalov Problem with Shift in $L^1$”, Izv. Akad. Nauk Arm. SSR. Matematika, 25 (1990), 18 (in Russian) | MR

[4] H. M. Hayrapetyan, V. G. Petrosyan, “Riemann Boundary Problem in Weighted Spaces $L^1(\rho)$”, Journal of Contemporary Mathematical Analysis, 51:5 (2016), 249–261 | DOI | MR | Zbl

[5] K.S. Kazarian, “Weighted Norm Inequalities for some Classes of Singular Integrals”, Studia Math., 86 (1987), 97–130 | MR | Zbl