An example of double Fourier–Haar series with a nonregular subseries
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 18-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We bring an example of integrable function on $[0;1]^2$, so that the double Fourier–Haar series has a subseries, whose majorant of partial sums does not belong to $L^{1,\infty}$.
Keywords: double Haar series, square function, $A$-integral.
Mots-clés : majorant
@article{UZERU_2017_51_1_a3,
     author = {K. A. Kerian},
     title = {An example of double {Fourier{\textendash}Haar} series with a nonregular subseries},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {18--21},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a3/}
}
TY  - JOUR
AU  - K. A. Kerian
TI  - An example of double Fourier–Haar series with a nonregular subseries
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 18
EP  - 21
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a3/
LA  - en
ID  - UZERU_2017_51_1_a3
ER  - 
%0 Journal Article
%A K. A. Kerian
%T An example of double Fourier–Haar series with a nonregular subseries
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 18-21
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a3/
%G en
%F UZERU_2017_51_1_a3
K. A. Kerian. An example of double Fourier–Haar series with a nonregular subseries. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 18-21. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a3/

[1] G.G. Gevorkyan, “On Uniqueness of Additive Functions of Dyadic Cubes and Series by Haar System”, J. Contemp. Math. Anal. NAS RA, 30:5 (1995), 2–13 | MR | Zbl

[2] L. A. Balashov, “Generalized Integration of Series by Haar System”, All Union School of Function Theory, Yer, 1987, 3

[3] G. G. Gevorkyan, K. A. Navasardyan, “On Haar Series of $A$-Integrable Functions”, Izv. NAS RA. Matematika, 52:1 (2017), 47–58 (in Russian)

[4] Transl. Math. Monogr., 75, Am. Math. Soc., Providence, RI, 1989, 449 pp. | MR