An example of double Fourier–Haar series with a nonregular subseries
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 18-21
Cet article a éte moissonné depuis la source Math-Net.Ru
We bring an example of integrable function on $[0;1]^2$, so that the double Fourier–Haar series has a subseries, whose majorant of partial sums does not belong to $L^{1,\infty}$.
Keywords:
double Haar series, square function, $A$-integral.
Mots-clés : majorant
Mots-clés : majorant
@article{UZERU_2017_51_1_a3,
author = {K. A. Kerian},
title = {An example of double {Fourier{\textendash}Haar} series with a nonregular subseries},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {18--21},
year = {2017},
volume = {51},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a3/}
}
TY - JOUR AU - K. A. Kerian TI - An example of double Fourier–Haar series with a nonregular subseries JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2017 SP - 18 EP - 21 VL - 51 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a3/ LA - en ID - UZERU_2017_51_1_a3 ER -
%0 Journal Article %A K. A. Kerian %T An example of double Fourier–Haar series with a nonregular subseries %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2017 %P 18-21 %V 51 %N 1 %U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a3/ %G en %F UZERU_2017_51_1_a3
K. A. Kerian. An example of double Fourier–Haar series with a nonregular subseries. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 18-21. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a3/
[1] G.G. Gevorkyan, “On Uniqueness of Additive Functions of Dyadic Cubes and Series by Haar System”, J. Contemp. Math. Anal. NAS RA, 30:5 (1995), 2–13 | MR | Zbl
[2] L. A. Balashov, “Generalized Integration of Series by Haar System”, All Union School of Function Theory, Yer, 1987, 3
[3] G. G. Gevorkyan, K. A. Navasardyan, “On Haar Series of $A$-Integrable Functions”, Izv. NAS RA. Matematika, 52:1 (2017), 47–58 (in Russian)
[4] Transl. Math. Monogr., 75, Am. Math. Soc., Providence, RI, 1989, 449 pp. | MR