Phase-contrast imaging based on three-block Fresnel zone plate interferometers using hard $\mathrm{X}$-ray laboratory sources
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 101-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

The earlier represented three-block Fresnel Zone Plate interferometer based hard $\mathrm{X}$-ray phase-contrast imaging setup designed for the initial plane wave radiation has been adapted to the laboratory sources of radiation. The limited distance between the source and the interferometer as well as the finite size of the source and the limited degree of monochromaticity of the illumination have been taken into account. It was shown that the decrease of the spatial coherency of the initial radiation does not worsen, and even improves the quality of the phase-contrast imaging, by suppressing the distortions caused by the $\mathrm{X}$-ray diffraction at the edges of the Fresnel zone plates and the knifes of the interferometer.
Keywords: $\mathrm{X}$-ray optics, Fresnel zone plate, phase-contrast.
@article{UZERU_2017_51_1_a18,
     author = {L. A. Haroutunyan},
     title = {Phase-contrast imaging based on three-block {Fresnel} zone plate interferometers using hard $\mathrm{X}$-ray laboratory sources},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {101--104},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a18/}
}
TY  - JOUR
AU  - L. A. Haroutunyan
TI  - Phase-contrast imaging based on three-block Fresnel zone plate interferometers using hard $\mathrm{X}$-ray laboratory sources
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 101
EP  - 104
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a18/
LA  - en
ID  - UZERU_2017_51_1_a18
ER  - 
%0 Journal Article
%A L. A. Haroutunyan
%T Phase-contrast imaging based on three-block Fresnel zone plate interferometers using hard $\mathrm{X}$-ray laboratory sources
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 101-104
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a18/
%G en
%F UZERU_2017_51_1_a18
L. A. Haroutunyan. Phase-contrast imaging based on three-block Fresnel zone plate interferometers using hard $\mathrm{X}$-ray laboratory sources. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 101-104. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a18/

[1] U. Bonse, M. Hart, “An $\mathrm{X}$-ray Interferometer”, Appl. Phys. Lett., 6 (1965), 155 | DOI

[2] U. Bonse, M. Hart, “Principles and Design of Laue-Case $\mathrm{X}$-ray Interferometers”, Z. Physik., 188 (1965), 154 | DOI

[3] A. Momose, “Demonstration of Phase-Contrast $\mathrm{X}$-ray Computed Tomography Using an $\mathrm{X}$-ray Interferometer”, Nucl. Instr. Meth. A, 352 (1995), 622 | DOI

[4] M. Takeda, H. Ina, S. Kobayashi, “Fourier-Transform Method of Fringe-Pattern Analysis for Computer-Based Topography and Interferometry”, J. Opt. Soc. Am., 72 (1982), 156 | DOI

[5] J.H. Bruning, D.R. Herriott, J.E. Gallagher, D.P. Rosenfeld, A.D. White, D.J. Brangaccio, “Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses”, Appl. Opt., 13 (1974), 2693 | DOI

[6] T. Koyama, A. Saikubo, K. Shimose, K. Hayashi, A. Nakagawa et al., “Hard $\mathrm{X}$-ray MicroInterferometer for High-Spatial-Resolution Phase Measurement”, IPAP Conf. Ser. Proc. 8th Int. Conf., $\mathrm{X}$-ray Microscopy, 7, 2006, 389

[7] T. Wilhein, B. Kaulich, J. Susini, “Two Zone Plate Interference Contrast Microscopy at 4 keV Photon Energy”, Opt. Commun., 193 (2001), 19 | DOI

[8] T. Koyama, T. Tsuji, Y K. oshida, H. Takano, Y. Tsusaka, Y. Kagoshima, “Hard $\mathrm{X}$-ray NanoInterferometer and Its Application to High-Spatial-Resolution Phase Tomography”, Jpn. J. Appl. Phys., 45 (2006), L1159 | DOI

[9] L.A. Haroutunyan, “$\mathrm{X}$-ray Phase Contrast Imaging with Optical Magnification Using Three-Block Interferometer with Bi-Level Fresnel Zone Plates”, J. Contem. Phys. (Armenian Ac. Sci.), 51 (2016), 284 | DOI

[10] J.W. Goodman, Introduction to Fourier Optics, McGraw-Hill, NY, 1996

[11] V.G. Kohn, I.I. Snigireva, A. Snigirev, “Numerical Modeling of Optical Properties of a System of Two Zone Plates for Focusing Hard Synchrotron Radiation”, Crystallography Reports, 51 (2006), S4 | DOI

[12] V.G. Kohnand, M.A. Orlov, “Computer Simulation of the Zernike Phase Contrast in Hard $\mathrm{X}$-ray Radiation Using Refractive Lenses and Zone Plates”, J. Surface Investigation, 4 (2010), 941 | DOI