Fuzzy Bayesian inferences
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 8-12.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider generalization of Bayesian theorem for the cases with fuzzy observations. It will be considered one of the forms of fuzzy Bayesian theorem introduced by Viertl. One can observe that it cannot be used as a generalization of ordinary Bayesian theorem with the form of likelihood function. We introduce other types of likelihood function satisfying some definite conditions.
Keywords: fuzzy statistics, Bayesian theorem, fuzzy random variables.
@article{UZERU_2017_51_1_a1,
     author = {V. G. Bardakhchyan},
     title = {Fuzzy {Bayesian} inferences},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {8--12},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a1/}
}
TY  - JOUR
AU  - V. G. Bardakhchyan
TI  - Fuzzy Bayesian inferences
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 8
EP  - 12
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a1/
LA  - en
ID  - UZERU_2017_51_1_a1
ER  - 
%0 Journal Article
%A V. G. Bardakhchyan
%T Fuzzy Bayesian inferences
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 8-12
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a1/
%G en
%F UZERU_2017_51_1_a1
V. G. Bardakhchyan. Fuzzy Bayesian inferences. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 8-12. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a1/

[1] J. G. Klirl, B. Yuan, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall PTR, 1995 | MR

[2] R. Viertl Statistical Methods for Fuzzy Data, Wiley, Chichester, 2011 | MR | Zbl

[3] R. Viertl, O. Sunanta, “Fuzzy Bayesian Inference.”, METRON, 71:3 (2013), 207–216 | DOI | MR | Zbl

[4] J. Buckley, Fuzzy Probability and Statistics, Berlin, Heidleberg, 2006.

[5] C.C. Yang, “Fuzzy Bayesian Inference”, IEEE International Conference, Proceeding of Systems, Man and Cybernetics, 3, 1997, 2707–2712

[6] O. Osoba, S.Miataim, B. Kosko, “Bayesian Inference with Adaptive Fuzzy Priors and Likelihoods”, IEEE Transactions on Systems, Man and Cybernetics, 41:5 (2011), 1183–1197 | DOI

[7] D.B. Owen, “A Table of Normal Integrals”, Communication in Statistics – Simulation and Computation, 9:4 (1980), 389–419 | DOI | MR

[8] M. Sugeno, Theory of Fuzzy Integrals and Its Applications, PhD Thesis, Tokyo Institute of Technology, 1974