Weighted spaces of functions harmonic in the unit ball
Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the Banach spaces $h_{\infty}(\varphi)$, $h_{0}(\varphi)$ and $h^{1}(\psi)$ functions harmonic in the unit ball $B\subset\mathbb{R}^n$. These spaces depend on weight functions $\varphi$, $\psi$. We prove that if $\varphi$ and $\psi$ form a normal pair, then $h^{1}(\psi)^*\sim h_{\infty}(\varphi)$ and $h_{0}(\varphi)^*\sim h^{1}(\psi)$.
Keywords: Banach space, harmonic function, weight function, duality.
@article{UZERU_2017_51_1_a0,
     author = {A. I. Petrosyan and K. L. Avetisyan},
     title = {Weighted spaces of functions harmonic in the unit ball},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--7},
     publisher = {mathdoc},
     volume = {51},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a0/}
}
TY  - JOUR
AU  - A. I. Petrosyan
AU  - K. L. Avetisyan
TI  - Weighted spaces of functions harmonic in the unit ball
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2017
SP  - 3
EP  - 7
VL  - 51
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a0/
LA  - en
ID  - UZERU_2017_51_1_a0
ER  - 
%0 Journal Article
%A A. I. Petrosyan
%A K. L. Avetisyan
%T Weighted spaces of functions harmonic in the unit ball
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2017
%P 3-7
%V 51
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a0/
%G en
%F UZERU_2017_51_1_a0
A. I. Petrosyan; K. L. Avetisyan. Weighted spaces of functions harmonic in the unit ball. Proceedings of the Yerevan State University. Physical and mathematical sciences, Tome 51 (2017) no. 1, pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2017_51_1_a0/

[1] L.A. Rubel, A.L. Shields, “The Second Duals of Certain Spaces of Analytic Functions”, J. Austral. Math. Soc., 11 (1970), 276–280 | DOI | MR | Zbl

[2] A.L. Shields, D.L.Williams, “Bounded Projections, Duality and Multipliers in Spaces of Harmonic Functions”, J. Reine Angew. Math., 299–300 (1978), 256–279 | MR | Zbl

[3] A.L. Shields, D.L.Williams, “Bounded Projections, Duality and Multipliers in Spaces of Analytic Functions”, Trans. Amer. Math. Soc., 162 (1971), 287–302 | MR

[4] A. I. Petrosyan, E. S. Mkrtchyan, “Duality in some spaces of functions harmonic in the unit ball”, Proceedings of the YSU, Physics Mathematics, 2013, no. 3, 29–36 | Zbl

[5] R. Coifman, R. Rochberg, “Representation Theorems for Holomorphic and Harmonic Functions in $L^p$”, Asterisque, 77 (1980), 11–66 | MR | Zbl

[6] A.E. Djrbashian, F.A. Shamoian, Topics in the Theory of $A_\alpha^p$ Spaces, Teubner Verlag, Leipzig, 1988, 200 pp. | MR

[7] M. Jevtić, M. Pavlović, “Harmonic Bergman Functions on the Unit Ball in $\mathbb{R}^n$”, Acta Math. Hungar., 85:1–2 (1999), 81–96 | DOI | MR | Zbl