Transitive hyperidentity in semigroups
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 52-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we characterize all semigroups in which the hyperidentity of transitivity $X(X(x,y), X(y,z)) = X(x,z)$ is polynomially satisfied. In particular, we show that every transitive semigroup (that is a semigroup with the identity $xy^2z = xz$) is also hypertransitive.
Keywords: transitive semigroup, transitivehyperidentity, polynomial satisfiability.
@article{UZERU_2016_3_a9,
     author = {T. A. Hakobyan},
     title = {Transitive hyperidentity in semigroups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {52--55},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_3_a9/}
}
TY  - JOUR
AU  - T. A. Hakobyan
TI  - Transitive hyperidentity in semigroups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 52
EP  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_3_a9/
LA  - en
ID  - UZERU_2016_3_a9
ER  - 
%0 Journal Article
%A T. A. Hakobyan
%T Transitive hyperidentity in semigroups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 52-55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_3_a9/
%G en
%F UZERU_2016_3_a9
T. A. Hakobyan. Transitive hyperidentity in semigroups. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 52-55. http://geodesic.mathdoc.fr/item/UZERU_2016_3_a9/

[1] Yu.M. Movsisyan, Introduction to the Theory of Algebras with Hyperidentities, YSU Press, Yer., 1986 (in Russian) | MR

[2] Yu.M. Movsisyan, Hyperidentities and Hypervarieties in Algebras, YSU Press, Yer., 1990 (in Russian) | MR

[3] Russian Math. Surveys, 53:1 (1998), 57–108 | DOI | DOI | MR | Zbl

[4] Yu.M. Movsisyan, “Hyperidentities and Hypervarieties”, Scientiae Mathematicae Japonicae, 54:3 (2001), 595–640 | MR | Zbl

[5] V.A. Artamonov, V.N. Salij, L.A. Skornjakov, L.N. Shevrin, E.G. Shulgeifer, General Algebra, v. 2, Nauka, M., 1991 (in Russian) | MR | Zbl

[6] Russian Math. Surveys, 20:1 (1965), 75–143 | DOI | MR | Zbl

[7] K. Denecke, J. Koppits, “Hyperassociative Varieties of Semigroups”, Semigroup Forum, 49 (1994), 41–48 | DOI | MR | Zbl

[8] L. Polak, “On Hyperassociativity”, Algebra Universalis, 36 (1996), 363–378 | DOI | MR | Zbl

[9] L. Polak, “All Solid Varieties of Semigroups”, Journal of Algebra, 219 (1999), 421–436 | DOI | MR | Zbl

[10] G. Paseman, On Two Problems from "Hyperidentities and Clones”, 2014, arXiv: 1408.2784v1 [math.LO]

[11] Yu.M. Movsisyan,T.A. Hakobyan, “Associative Nontrivial Hyperidentities in Semigroups”, J. Contemp. Math. Anal., 46:3 (2011), 121–130 | DOI | MR | Zbl

[12] Yu.M. Movsisyan, T.A. Hakobyan, “Distributive Hyperidentities in Semigroups”, J. Contemp. Math. Anal., 46:6 (2011), 293–298 | DOI | MR | Zbl

[13] K. Denecke, Sh.L. Wismath, Hyperidentities and Clones, Gordon and Breach Science Publishers, 2000 | MR | Zbl

[14] J. Koppitz, K. Denecke, M-Solid Varieties of Algebras, Springer, 2006 | MR | Zbl