Transitive hyperidentity in semigroups
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 52-55

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we characterize all semigroups in which the hyperidentity of transitivity $X(X(x,y), X(y,z)) = X(x,z)$ is polynomially satisfied. In particular, we show that every transitive semigroup (that is a semigroup with the identity $xy^2z = xz$) is also hypertransitive.
Keywords: transitive semigroup, transitivehyperidentity, polynomial satisfiability.
@article{UZERU_2016_3_a9,
     author = {T. A. Hakobyan},
     title = {Transitive hyperidentity in semigroups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {52--55},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_3_a9/}
}
TY  - JOUR
AU  - T. A. Hakobyan
TI  - Transitive hyperidentity in semigroups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 52
EP  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_3_a9/
LA  - en
ID  - UZERU_2016_3_a9
ER  - 
%0 Journal Article
%A T. A. Hakobyan
%T Transitive hyperidentity in semigroups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 52-55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_3_a9/
%G en
%F UZERU_2016_3_a9
T. A. Hakobyan. Transitive hyperidentity in semigroups. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 52-55. http://geodesic.mathdoc.fr/item/UZERU_2016_3_a9/