On fusion matrix in $N = 1$ super Liuville field theory
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 32-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study several aspects of the $N = 1$ super Liouville theory. We show that certain elements of the fusion matrix in the Neveu–Schwarz sector are related to the structure constants according to the same rules which we observe in rational conformal field theory.
Keywords: conformal field theory, Moore–Seiberg relation.
@article{UZERU_2016_3_a5,
     author = {H. R. Poghosyan and G. A. Sarkissian},
     title = {On fusion matrix in $N = 1$ super {Liuville} field theory},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {32--36},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_3_a5/}
}
TY  - JOUR
AU  - H. R. Poghosyan
AU  - G. A. Sarkissian
TI  - On fusion matrix in $N = 1$ super Liuville field theory
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 32
EP  - 36
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_3_a5/
LA  - en
ID  - UZERU_2016_3_a5
ER  - 
%0 Journal Article
%A H. R. Poghosyan
%A G. A. Sarkissian
%T On fusion matrix in $N = 1$ super Liuville field theory
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 32-36
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_3_a5/
%G en
%F UZERU_2016_3_a5
H. R. Poghosyan; G. A. Sarkissian. On fusion matrix in $N = 1$ super Liuville field theory. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 32-36. http://geodesic.mathdoc.fr/item/UZERU_2016_3_a5/

[1] G.W. Moore, N. Seiberg, Lectures on RCFT, Trieste Superstrings, 1989, 129 pp. | MR

[2] A.A. Belavin, A.M. Polyakov, A.M. Zamolodchikov, “Infinite Conformal Symmetry in Two-Dimensional Quantum Field Theory”, Nucl. Phys. B, 241 (1984), 333 | DOI | MR

[3] G. Sarkissian, “Some Remarks on D-Branes and Defects in Liouville and Toda Field Theories”, Int. J. Mod. Phys. A, 27 (2012), 1250181 | DOI | MR

[4] J. Teschner, “Nonrational Conformal Field Theory”, New Trends in Mathematical Physics. Selected Contributions of the 15th ICMP, ed. Vladas Sidoravicius, Springer, Science and Business Media B.V., 2009

[5] J. Teschner, G.S. Vartanov, “Supersymmetric Gauge Theories, Quantization of Mflat, and Conformal Field Theory”, Adv. Theor. Math. Phys., 19 (2015), 1–135 | DOI | MR

[6] L. Hadasz, M. Pawelkiewicz, V. Schomerus, “Self-Dual Continuous Series of Representations for $U_q(sl(2))$ and $U_q(osp(1|2))$”, JHEP, 1410 (2014), 91 | DOI | MR

[7] L. Hadasz, “On the Fusion Matrix of the $N = 1$ Neveu–Schwarz Blocks”, JHEP, 712 (2007), 71 | DOI | MR

[8] R.H. Poghossian, “Structure Constants in the $N = 1$ Super Liouville Field Theory”, Nucl. Phys. B, 496 (1997), 451 | DOI | MR