Odd symmetric tensors, and an analogue of the Levi-Civita connection for odd symplectic structure
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 25-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider odd Poisson (odd symplectic) structure on supermanifolds induced by an odd symmetric rank $2$ (non-degenerate) contravariant tensor field. We describe the difference between odd Riemannian and odd symplectic structure in terms of the Cartan prolongation of the corresponding Lie algebras, and formulate an analogue of the Levi- Civita theorem for an odd symplectic supermanifold.
Keywords: half-density, odd (anti)symmetric tensor, second order compensation field, odd symplectic geometry, odd canonical operator.
Mots-clés : odd Poisson bracket, Cartan prolongation
@article{UZERU_2016_3_a4,
     author = {H. M. Khudaverdian and M. Peddie},
     title = {Odd symmetric tensors, and an analogue of the {Levi-Civita} connection for odd symplectic structure},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {25--31},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_3_a4/}
}
TY  - JOUR
AU  - H. M. Khudaverdian
AU  - M. Peddie
TI  - Odd symmetric tensors, and an analogue of the Levi-Civita connection for odd symplectic structure
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 25
EP  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_3_a4/
LA  - en
ID  - UZERU_2016_3_a4
ER  - 
%0 Journal Article
%A H. M. Khudaverdian
%A M. Peddie
%T Odd symmetric tensors, and an analogue of the Levi-Civita connection for odd symplectic structure
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 25-31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_3_a4/
%G en
%F UZERU_2016_3_a4
H. M. Khudaverdian; M. Peddie. Odd symmetric tensors, and an analogue of the Levi-Civita connection for odd symplectic structure. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 25-31. http://geodesic.mathdoc.fr/item/UZERU_2016_3_a4/

[1] H.M. Khudaverdian, Th. Voronov, “On Odd Laplace Operators”, Lett. Math. Phys., 62 (2002), 127–142 | MR

[2] H.M. Khudaverdian, Th. Voronov, “On Odd Laplace Operators II”, Amer. Math. Soc. Transl., 2:212 (2004), 179 | MR

[3] Th. Voronov, On Volumes of Classical Supermanifolds, 2015, arXiv: 1503.06542v2 [math.DG] | MR

[4] S. Kobayashi, Transformation Groups in Differential Geometry, Springer–Verlag, Berlin–Heidelberg–New York, 1972 | MR

[5] O.M. Khudaverdian, “Geometry of Superspace with Even and Odd Brackets”, J. Math. Phys., 32 (1991), 1934–1937 | MR

[6] H.M. Khudaverdian, M. Peddie, Odd Laplacians: Geometrical Meaning of Potential and Modular Class, 2015, arXiv: 1509.05686v2 [math-ph] | MR

[7] H.M. Khudaverdian, “Semidensities on Odd Symplectic Supermanifold”, Comm. Math. Phys., 247 (2004), 353–390; (2000), arXiv: 0012256v1 [math.DG] | MR

[8] K. Bering, “A Note on Semidensities in Antisymplectic Geometry”, J. Math. Phys., 47 (2006), 123513 | MR

[9] I.A. Batalin, K. Bering, “Odd Scalar Curvature in Field-Antifield Formalism”, J. Math. Phys., 49 (2008), 33515 | MR