On Noethericity and index of differential operators in anisotropic weighted Sobolev spaces
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 63-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper studies Noethericity and index in anisotropic weighted Sobolev spaces in $\mathbb{R}^m$. Sufficient conditions are established for Noethericity preservation in weighted spaces. Applying the results obtained for operators acting in weighted Sobolev spaces, sufficient condition for semi-elliptic operator to have zero index is found.
Keywords: Noetherian operator, index of operator, weighted Sobolev spaces.
@article{UZERU_2016_3_a11,
     author = {A. G. Tumanyan},
     title = {On {Noethericity} and index of differential operators in anisotropic weighted {Sobolev} spaces},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {63--69},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_3_a11/}
}
TY  - JOUR
AU  - A. G. Tumanyan
TI  - On Noethericity and index of differential operators in anisotropic weighted Sobolev spaces
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 63
EP  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_3_a11/
LA  - en
ID  - UZERU_2016_3_a11
ER  - 
%0 Journal Article
%A A. G. Tumanyan
%T On Noethericity and index of differential operators in anisotropic weighted Sobolev spaces
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 63-69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_3_a11/
%G en
%F UZERU_2016_3_a11
A. G. Tumanyan. On Noethericity and index of differential operators in anisotropic weighted Sobolev spaces. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 63-69. http://geodesic.mathdoc.fr/item/UZERU_2016_3_a11/

[1] Russian Math. Surveys, 20:5 (1965), 1–121 | DOI | MR | Zbl

[2] M.F. Atiyah, I.M. Singer, “The Index of Elliptic Operators on Compact Manifolds”, Bull. Amer. Math. Soc., 69 (1963), 422–433 | DOI | MR | Zbl

[3] Math. USSR-Sb., 15:1 (1971), 121–140 | DOI | MR | Zbl

[4] È. M. Muhamadiev, “On the normal solvability of elliptic operators in the spaces of functions on $\mathbb R^n$, part II”, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Zap. Nauchn. Sem. LOMI, 138, Nauka, Leningrad. Otdel., Leningrad, 1984, 108–126 (in Russian) | MR | Zbl

[5] A.A. Darbinyan, A.G. Tumanyan, “Necessary and Sufficient Condition of Noethericity for Operators with Constant Coefficients”, Proceedings of Russian-Armenian (Slavonic) University. Physical, Mathematical and Natural Sciences, 2014, no. 2, 4–14 (in Russian)

[6] Siberian Math. J., 49:5 (2008), 842–851 | DOI | MR | Zbl

[7] G.A. Karapetyan, A.A. Darbinyan, “Index of Semi-Elliptic Operator in $\mathbb{R}^n$”, Proceedings of the NAS Armenia. Mathematics, 42:5 (2007), 33–50 (in Russian) | MR | Zbl

[8] A.G. Tumanyan, “On the Invariance of Index of Semi-Elliptic Operator on the Scale of Anisotropic Spaces”, Journal of Contemporary Mathematical Analysis, Armenian Academy of Sciences, 51:4 (2016), 187–198 | DOI

[9] I. Ts. Gokhberg, M. G. Krein, “Fundamental aspects of defect numbers, root numbers and indexes of linear operators”, Uspekhi Mat. Nauk, 12:2(74) (1957), 43–118 (in Russian) | MR | Zbl

[10] S.S. Kutateladze, Fundamentals of Functional Analysis, Kluwer Texts in the Mathematical Sciences, 12, Kluwer Academic Publishers Group, Dordrecht, 1996 | DOI | MR