Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2016_3_a11, author = {A. G. Tumanyan}, title = {On {Noethericity} and index of differential operators in anisotropic weighted {Sobolev} spaces}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {63--69}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2016_3_a11/} }
TY - JOUR AU - A. G. Tumanyan TI - On Noethericity and index of differential operators in anisotropic weighted Sobolev spaces JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2016 SP - 63 EP - 69 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2016_3_a11/ LA - en ID - UZERU_2016_3_a11 ER -
%0 Journal Article %A A. G. Tumanyan %T On Noethericity and index of differential operators in anisotropic weighted Sobolev spaces %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2016 %P 63-69 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2016_3_a11/ %G en %F UZERU_2016_3_a11
A. G. Tumanyan. On Noethericity and index of differential operators in anisotropic weighted Sobolev spaces. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 63-69. http://geodesic.mathdoc.fr/item/UZERU_2016_3_a11/
[1] Russian Math. Surveys, 20:5 (1965), 1–121 | DOI | MR | Zbl
[2] M.F. Atiyah, I.M. Singer, “The Index of Elliptic Operators on Compact Manifolds”, Bull. Amer. Math. Soc., 69 (1963), 422–433 | DOI | MR | Zbl
[3] Math. USSR-Sb., 15:1 (1971), 121–140 | DOI | MR | Zbl
[4] È. M. Muhamadiev, “On the normal solvability of elliptic operators in the spaces of functions on $\mathbb R^n$, part II”, Boundary-value problems of mathematical physics and related problems of function theory. Part 16, Zap. Nauchn. Sem. LOMI, 138, Nauka, Leningrad. Otdel., Leningrad, 1984, 108–126 (in Russian) | MR | Zbl
[5] A.A. Darbinyan, A.G. Tumanyan, “Necessary and Sufficient Condition of Noethericity for Operators with Constant Coefficients”, Proceedings of Russian-Armenian (Slavonic) University. Physical, Mathematical and Natural Sciences, 2014, no. 2, 4–14 (in Russian)
[6] Siberian Math. J., 49:5 (2008), 842–851 | DOI | MR | Zbl
[7] G.A. Karapetyan, A.A. Darbinyan, “Index of Semi-Elliptic Operator in $\mathbb{R}^n$”, Proceedings of the NAS Armenia. Mathematics, 42:5 (2007), 33–50 (in Russian) | MR | Zbl
[8] A.G. Tumanyan, “On the Invariance of Index of Semi-Elliptic Operator on the Scale of Anisotropic Spaces”, Journal of Contemporary Mathematical Analysis, Armenian Academy of Sciences, 51:4 (2016), 187–198 | DOI
[9] I. Ts. Gokhberg, M. G. Krein, “Fundamental aspects of defect numbers, root numbers and indexes of linear operators”, Uspekhi Mat. Nauk, 12:2(74) (1957), 43–118 (in Russian) | MR | Zbl
[10] S.S. Kutateladze, Fundamentals of Functional Analysis, Kluwer Texts in the Mathematical Sciences, 12, Kluwer Academic Publishers Group, Dordrecht, 1996 | DOI | MR