Local existence theorem for the equations of motion of viscous liquid in H\"older weight spaces
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 56-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a proof of a local existence theorem for the equation of motion of viscous liquid in Hölder weight spaces is presented.
Keywords: parabolic systems, Hölder weight spaces.
Mots-clés : viscous motion equations
@article{UZERU_2016_3_a10,
     author = {A. G. Khachatryan},
     title = {Local existence theorem for the equations of motion of viscous liquid in {H\"older} weight spaces},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {56--62},
     publisher = {mathdoc},
     number = {3},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_3_a10/}
}
TY  - JOUR
AU  - A. G. Khachatryan
TI  - Local existence theorem for the equations of motion of viscous liquid in H\"older weight spaces
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 56
EP  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_3_a10/
LA  - en
ID  - UZERU_2016_3_a10
ER  - 
%0 Journal Article
%A A. G. Khachatryan
%T Local existence theorem for the equations of motion of viscous liquid in H\"older weight spaces
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 56-62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_3_a10/
%G en
%F UZERU_2016_3_a10
A. G. Khachatryan. Local existence theorem for the equations of motion of viscous liquid in H\"older weight spaces. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 56-62. http://geodesic.mathdoc.fr/item/UZERU_2016_3_a10/

[1] A. Tani, “The Initial Value Problem for the Equation of Motion of General Fluid with Som Slip Boundary Condition”, Keio Math. Sem. Rep., 1983, no. 8, 77–83 | MR

[2] A. Tani, “Global Solution to the Conserved Phase Field Equations of Penrose–Fife Type”, Commun. Appl. Anal., 16,:4 (2012), 703–706 | MR

[3] V.A. Solonnikov, A.V. Kazhikhov, “Existence Theorem for the Equations of Motion of a Compressible Viscous Fluid”, Ann. Rev. Fluid. Mech., 13 (1981), 79—95 | DOI | MR | Zbl

[4] Math. USSR-Izv., 11:6 (1977), 1323–1358 | DOI | MR | Zbl | Zbl

[5] V. A. Solonnikov, A. G. Khachatryan, “Estimates for solutions of parabolic initial-boundary value problems in weighted Hölder norms”, Boundary value problems of mathematical physics. 10, Work collection, Trudy Mat. Inst. Steklov., 147, 1980, 147–155 | MR | Zbl