Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2016_3_a10, author = {A. G. Khachatryan}, title = {Local existence theorem for the equations of motion of viscous liquid in {H\"older} weight spaces}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {56--62}, publisher = {mathdoc}, number = {3}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2016_3_a10/} }
TY - JOUR AU - A. G. Khachatryan TI - Local existence theorem for the equations of motion of viscous liquid in H\"older weight spaces JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2016 SP - 56 EP - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2016_3_a10/ LA - en ID - UZERU_2016_3_a10 ER -
%0 Journal Article %A A. G. Khachatryan %T Local existence theorem for the equations of motion of viscous liquid in H\"older weight spaces %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2016 %P 56-62 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2016_3_a10/ %G en %F UZERU_2016_3_a10
A. G. Khachatryan. Local existence theorem for the equations of motion of viscous liquid in H\"older weight spaces. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2016), pp. 56-62. http://geodesic.mathdoc.fr/item/UZERU_2016_3_a10/
[1] A. Tani, “The Initial Value Problem for the Equation of Motion of General Fluid with Som Slip Boundary Condition”, Keio Math. Sem. Rep., 1983, no. 8, 77–83 | MR
[2] A. Tani, “Global Solution to the Conserved Phase Field Equations of Penrose–Fife Type”, Commun. Appl. Anal., 16,:4 (2012), 703–706 | MR
[3] V.A. Solonnikov, A.V. Kazhikhov, “Existence Theorem for the Equations of Motion of a Compressible Viscous Fluid”, Ann. Rev. Fluid. Mech., 13 (1981), 79—95 | DOI | MR | Zbl
[4] Math. USSR-Izv., 11:6 (1977), 1323–1358 | DOI | MR | Zbl | Zbl
[5] V. A. Solonnikov, A. G. Khachatryan, “Estimates for solutions of parabolic initial-boundary value problems in weighted Hölder norms”, Boundary value problems of mathematical physics. 10, Work collection, Trudy Mat. Inst. Steklov., 147, 1980, 147–155 | MR | Zbl