On $\lambda$-definability of arithmetical functions with indeterminate values of arguments
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 39-47
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the arithmetical functions with indeterminate values of arguments are regarded. It is known that every $\lambda$-definable arithmetical function with indeterminate values of arguments is monotonic and computable. The $\lambda$-definability of every computable, monotonic, $1$-ary arithmetical function with indeterminate values of arguments is proved. For computable, monotonic, $k$-ary, $k\ge2$, arithmetical functions with indeterminate values of arguments, the so-called diagonal property is defined. It is proved that every computable, monotonic, $k$-ary, $k\ge2$, arithmetical function with indeterminate values of arguments, which has the diagonal property, is not $\lambda$-definable. It is proved that for any $k\ge2,$ the problem of $\lambda$-definability for computable, monotonic, $k$-ary arithmetical functions with indeterminate values of arguments is algorithmic unsolvable. It is also proved that the problem of diagonal property of such functions is algorithmic unsolvable, too.
Keywords:
arithmetical functions, indeterminate value of argument, monotonicity, computability, strong computability, $\lambda$-definability, algorithmic unsolvability.
@article{UZERU_2016_2_a6,
author = {S. A. Nigiyan},
title = {On $\lambda$-definability of arithmetical functions with indeterminate values of arguments},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {39--47},
year = {2016},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2016_2_a6/}
}
TY - JOUR AU - S. A. Nigiyan TI - On $\lambda$-definability of arithmetical functions with indeterminate values of arguments JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2016 SP - 39 EP - 47 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2016_2_a6/ LA - en ID - UZERU_2016_2_a6 ER -
%0 Journal Article %A S. A. Nigiyan %T On $\lambda$-definability of arithmetical functions with indeterminate values of arguments %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2016 %P 39-47 %N 2 %U http://geodesic.mathdoc.fr/item/UZERU_2016_2_a6/ %G en %F UZERU_2016_2_a6
S. A. Nigiyan. On $\lambda$-definability of arithmetical functions with indeterminate values of arguments. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 39-47. http://geodesic.mathdoc.fr/item/UZERU_2016_2_a6/
[1] Z. Manna, Mathematical Theory of Computation, McGraw-Hill Book Company, 1974 | MR | Zbl
[2] S.A. Nigiyan, “On Non-classical Theory of Computability”, Proceedings of the YSU. Physical $\$ Mathematical Sciences, 2015, no. 1, 52–60 | Zbl
[3] H. Barendregt, The Lambda Calculus. Its Syntax and Semantics, North-Holland Publishing Company, 1981 | MR | Zbl
[4] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Company, 1967 | MR | Zbl