Moore–Penrose inverse of bidiagonal matrices. IV
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 28-34
Cet article a éte moissonné depuis la source Math-Net.Ru
The present work completes a research started in the papers $[1-3]$. Based on the results obtained in the previous papers, here we give a definitive solution to the problem of the Moore–Penrose inversion of singular upper bidiagonal matrices.
Keywords:
generalized inverse, Moore–Penrose inverse
Mots-clés : bidiagonal matrix.
Mots-clés : bidiagonal matrix.
@article{UZERU_2016_2_a4,
author = {Yu. R. Hakopian and S. S. Aleksanyan},
title = {Moore{\textendash}Penrose inverse of bidiagonal matrices. {IV}},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {28--34},
year = {2016},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2016_2_a4/}
}
TY - JOUR AU - Yu. R. Hakopian AU - S. S. Aleksanyan TI - Moore–Penrose inverse of bidiagonal matrices. IV JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2016 SP - 28 EP - 34 IS - 2 UR - http://geodesic.mathdoc.fr/item/UZERU_2016_2_a4/ LA - en ID - UZERU_2016_2_a4 ER -
Yu. R. Hakopian; S. S. Aleksanyan. Moore–Penrose inverse of bidiagonal matrices. IV. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2016), pp. 28-34. http://geodesic.mathdoc.fr/item/UZERU_2016_2_a4/
[1] Yu. R. Akopian, S. S. Aleksanyan, “Moore–Penrose inverse of bidiagonal matrices. I”, Proceedings of the YSU, Physics $\$ Mathematics, 2015, no. 2, 11–20 | Zbl
[2] Yu. R. Akopian, S. S. Aleksanyan, “Moore–Penrose inverse of bidiagonal matrices. II”, Proceedings of the YSU, Physics $\$ Mathematics, 2015, no. 3, 8–16 | Zbl
[3] Yu. R. Hakopian, S. S. Aleksanyan, “Moore–Penrose inverse of bidiagonal matrices. III”, Proceedings of the YSU, Physics Mathematics, 2016, no. 1, 12–21