An asymptotic estimate of the number of solutions of a special system of Boolean equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 35-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a special class of systems of Boolean equations is investigated. For a "typical" case of such systems an asymptotic estimate for the number of solutions is determined.
Keywords: Boolean equations, linear Boolean functions, equations of the special form.
@article{UZERU_2016_1_a5,
     author = {Ed. V. Yeghiazaryan and G. P. Tonoyan},
     title = {An asymptotic estimate of the number of solutions of a special system of {Boolean} equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {35--39},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_1_a5/}
}
TY  - JOUR
AU  - Ed. V. Yeghiazaryan
AU  - G. P. Tonoyan
TI  - An asymptotic estimate of the number of solutions of a special system of Boolean equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 35
EP  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_1_a5/
LA  - en
ID  - UZERU_2016_1_a5
ER  - 
%0 Journal Article
%A Ed. V. Yeghiazaryan
%A G. P. Tonoyan
%T An asymptotic estimate of the number of solutions of a special system of Boolean equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 35-39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_1_a5/
%G en
%F UZERU_2016_1_a5
Ed. V. Yeghiazaryan; G. P. Tonoyan. An asymptotic estimate of the number of solutions of a special system of Boolean equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 35-39. http://geodesic.mathdoc.fr/item/UZERU_2016_1_a5/

[1] M. Geri, D. Johnson, Computers and Intractability, Mir, M., 1982 | MR

[2] E.V. Yeghiazaryan, “Metric Properties of Systems of Boolean Equations”, DAN Armenian SSR, 72:2 (1981) (in Russian) | MR

[3] E.V. Yeghiazaryan, “Estimates Related to the Number of Solutions of Boolean Equations”, Tasks of Cybernetics: Combinatorial Analysis and Graph Theory, M., 1981, 124–130 (in Russian)

[4] W. Feller, An Introduction to Probability Theory and Its Applications, v. 1, Mir, M., 1976 (in Russian)