Moore–Penrose inverse of bidiagonal matrices. III
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 12-21
Cet article a éte moissonné depuis la source Math-Net.Ru
The present paper is a direct continuation of the papers [1,2]. We obtain intermediate results, which will be used in the next final fourth part of this study, where a definitive solution to the Moore–Penrose inversion problem for singular upper bidiagonal matrices is given.
Keywords:
generalized inverse, Moore–Penrose inverse
Mots-clés : bidiagonal matrix.
Mots-clés : bidiagonal matrix.
@article{UZERU_2016_1_a2,
author = {Yu. R. Hakopian and S. S. Aleksanyan},
title = {Moore{\textendash}Penrose inverse of bidiagonal matrices. {III}},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {12--21},
year = {2016},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2016_1_a2/}
}
TY - JOUR AU - Yu. R. Hakopian AU - S. S. Aleksanyan TI - Moore–Penrose inverse of bidiagonal matrices. III JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2016 SP - 12 EP - 21 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_2016_1_a2/ LA - en ID - UZERU_2016_1_a2 ER -
Yu. R. Hakopian; S. S. Aleksanyan. Moore–Penrose inverse of bidiagonal matrices. III. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 12-21. http://geodesic.mathdoc.fr/item/UZERU_2016_1_a2/
[1] Yu. R. Akopian, S. S. Aleksanyan, “Moore–Penrose inverse of bidiagonal matrices. I”, Proceedings of the YSU, Physics $\$ Mathematics, 2015, no. 2, 11–20 | Zbl
[2] Yu. R. Akopian, S. S. Aleksanyan, “Moore–Penrose inverse of bidiagonal matrices. II”, Proceedings of the YSU, Physics $\$ Mathematics, 2015, no. 3, 8–16 | Zbl