Moore–Penrose inverse of bidiagonal matrices. III
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 12-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is a direct continuation of the papers [1,2]. We obtain intermediate results, which will be used in the next final fourth part of this study, where a definitive solution to the Moore–Penrose inversion problem for singular upper bidiagonal matrices is given.
Keywords: generalized inverse, Moore–Penrose inverse
Mots-clés : bidiagonal matrix.
@article{UZERU_2016_1_a2,
     author = {Yu. R. Hakopian and S. S. Aleksanyan},
     title = {Moore{\textendash}Penrose inverse of bidiagonal matrices. {III}},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {12--21},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_1_a2/}
}
TY  - JOUR
AU  - Yu. R. Hakopian
AU  - S. S. Aleksanyan
TI  - Moore–Penrose inverse of bidiagonal matrices. III
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 12
EP  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_1_a2/
LA  - en
ID  - UZERU_2016_1_a2
ER  - 
%0 Journal Article
%A Yu. R. Hakopian
%A S. S. Aleksanyan
%T Moore–Penrose inverse of bidiagonal matrices. III
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 12-21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_1_a2/
%G en
%F UZERU_2016_1_a2
Yu. R. Hakopian; S. S. Aleksanyan. Moore–Penrose inverse of bidiagonal matrices. III. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 12-21. http://geodesic.mathdoc.fr/item/UZERU_2016_1_a2/

[1] Yu. R. Akopian, S. S. Aleksanyan, “Moore–Penrose inverse of bidiagonal matrices. I”, Proceedings of the YSU, Physics $\$ Mathematics, 2015, no. 2, 11–20 | Zbl

[2] Yu. R. Akopian, S. S. Aleksanyan, “Moore–Penrose inverse of bidiagonal matrices. II”, Proceedings of the YSU, Physics $\$ Mathematics, 2015, no. 3, 8–16 | Zbl