On the almost everywhere convergence of negative order Cesaro means of Fourier–Walsh series
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 64-66
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper is presented existence of an increasing sequence of natural numbers $M_{\nu} (\nu=0,1,...)$, such that for any $\varepsilon>0$ there exists a measurable set $E$ with a measure $\mu E > 1-\varepsilon>0$ such that for any function $f(x)\in L^1[0, 1]$ one can find a function $g(x)\in L^1[0, 1]$ which coincides with the function $f$ on $E$, and for any a $\alpha\neq 1, 2,...$ the Cesaro means $\sigma^{\alpha}_{M_{\nu}} (x,\tilde{f})\ (\nu=0,1,...)$ converges to $g(x)$ almost everywhere on $[0,1]$.
Keywords:
Fourier–Walsh series, Cesaro means.
@article{UZERU_2016_1_a10,
author = {L. N. Galoyan and R. G. Melikbekyan},
title = {On the almost everywhere convergence of negative order {Cesaro} means of {Fourier{\textendash}Walsh} series},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {64--66},
publisher = {mathdoc},
number = {1},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2016_1_a10/}
}
TY - JOUR AU - L. N. Galoyan AU - R. G. Melikbekyan TI - On the almost everywhere convergence of negative order Cesaro means of Fourier–Walsh series JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2016 SP - 64 EP - 66 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2016_1_a10/ LA - en ID - UZERU_2016_1_a10 ER -
%0 Journal Article %A L. N. Galoyan %A R. G. Melikbekyan %T On the almost everywhere convergence of negative order Cesaro means of Fourier–Walsh series %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2016 %P 64-66 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2016_1_a10/ %G en %F UZERU_2016_1_a10
L. N. Galoyan; R. G. Melikbekyan. On the almost everywhere convergence of negative order Cesaro means of Fourier–Walsh series. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 64-66. http://geodesic.mathdoc.fr/item/UZERU_2016_1_a10/