On the almost everywhere convergence of negative order Cesaro means of Fourier–Walsh series
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 64-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper is presented existence of an increasing sequence of natural numbers $M_{\nu} (\nu=0,1,...)$, such that for any $\varepsilon>0$ there exists a measurable set $E$ with a measure $\mu E > 1-\varepsilon>0$ such that for any function $f(x)\in L^1[0, 1]$ one can find a function $g(x)\in L^1[0, 1]$ which coincides with the function $f$ on $E$, and for any a $\alpha\neq 1, 2,...$ the Cesaro means $\sigma^{\alpha}_{M_{\nu}} (x,\tilde{f})\ (\nu=0,1,...)$ converges to $g(x)$ almost everywhere on $[0,1]$.
Keywords: Fourier–Walsh series, Cesaro means.
@article{UZERU_2016_1_a10,
     author = {L. N. Galoyan and R. G. Melikbekyan},
     title = {On the almost everywhere convergence of negative order {Cesaro} means of {Fourier{\textendash}Walsh} series},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {64--66},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_1_a10/}
}
TY  - JOUR
AU  - L. N. Galoyan
AU  - R. G. Melikbekyan
TI  - On the almost everywhere convergence of negative order Cesaro means of Fourier–Walsh series
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 64
EP  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_1_a10/
LA  - en
ID  - UZERU_2016_1_a10
ER  - 
%0 Journal Article
%A L. N. Galoyan
%A R. G. Melikbekyan
%T On the almost everywhere convergence of negative order Cesaro means of Fourier–Walsh series
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 64-66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_1_a10/
%G en
%F UZERU_2016_1_a10
L. N. Galoyan; R. G. Melikbekyan. On the almost everywhere convergence of negative order Cesaro means of Fourier–Walsh series. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 64-66. http://geodesic.mathdoc.fr/item/UZERU_2016_1_a10/

[1] D. E. Men'shov, “Application of Cesàro summability methods of negative order to trigonometric Fourier series of summable and square summable functions”, Math. USSR-Sb., 22:4 (1974), 497–515 | DOI

[2] M. Grigorian, “On the Convergence of Fourier Series in the Metric of $L^1$”, Analysis Math., 17 (1991), 211–237 | DOI | Zbl

[3] L.N. Galoyan, M.G. Grigoryan, A.Kh. Kobelyan, “Convergence of Fourier Series in Classical Systems”, Mat. Sb., 206:7 (2015), 55–94 | DOI | MR | Zbl

[4] M.G. Grigoryan, L.N. Galoyan, “On the Uniform Convergence of Negative Order Cesaro Means of Fourier Series”, Journal of Mathem. Anal. and Appl., 434 (2016), 554–567 | DOI | MR | Zbl

[5] L.N. Galoyan, “On the Convergence in the Metric of $L^p$ of Negative Order Cesaro Means of Fourier Series”, Izvestia NAN Armenii. Matematika, 47:3 (2012), 35–54 | MR | Zbl