On a family of polynomials with respect to the Haar system
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 3-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct a sequence of polynomials with respect to the Haar system and show that they form democratic bases in $L^1(0,1)$.
Keywords: Haar system, democratic bases in $L^1(0,1)$.
Mots-clés : Haar polynomial
@article{UZERU_2016_1_a0,
     author = {S. L. Gogyan},
     title = {On a family of polynomials with respect to the {Haar} system},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--6},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2016_1_a0/}
}
TY  - JOUR
AU  - S. L. Gogyan
TI  - On a family of polynomials with respect to the Haar system
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2016
SP  - 3
EP  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2016_1_a0/
LA  - en
ID  - UZERU_2016_1_a0
ER  - 
%0 Journal Article
%A S. L. Gogyan
%T On a family of polynomials with respect to the Haar system
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2016
%P 3-6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2016_1_a0/
%G en
%F UZERU_2016_1_a0
S. L. Gogyan. On a family of polynomials with respect to the Haar system. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2016), pp. 3-6. http://geodesic.mathdoc.fr/item/UZERU_2016_1_a0/

[1] S. Konyagin, V.N. Temlyakov, “A Remark on Greedy Approximation in Banach Spaces”, East J. Approx., 5 (1999), 365–379 | MR | Zbl

[2] V.N. Temlyakov, “Greedy Approximation”, Acta Numerica, 17 (2008), 235–409 | DOI | MR | Zbl

[3] S. Gogyan, “Greedy Algorithm with Regard to Haar Subsystems”, East J. Approx., 11 (2005), 221–236 | MR | Zbl

[4] S. Gogyan, “An Example of Almost Greedy Basis in $L^1(0;1)$”, Proceedings of the American Mathematical Society, 138 (2010), 1425–1432 | DOI | MR | Zbl

[5] S.J. Dilworth, N.J. Kalton, D. Kutzarova, “On the Existence of Almost Greedy Bases in Banach Spaces”, Studia Mathematica, 159 (2003), 67–101 | DOI | MR | Zbl