A representation for the support function of a convex body
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a formula for a translation invariant measure of planes intersecting a $n$-dimensional convex body in terms of curvatures of $2$-dimensional projections of the body was found. The paper also gives a new simple proof of the representation for the support function of an origin symmetric $3$-dimensional convex body, which was obtained by means of a stochastic approximation of the convex body.
Keywords: integral geometry, convex body, zonoid, support function.
@article{UZERU_2015_3_a0,
     author = {R. H. Aramyan and A. G. Manucharyan},
     title = {A representation for the support function of a convex body},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--7},
     publisher = {mathdoc},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_3_a0/}
}
TY  - JOUR
AU  - R. H. Aramyan
AU  - A. G. Manucharyan
TI  - A representation for the support function of a convex body
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 3
EP  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_3_a0/
LA  - en
ID  - UZERU_2015_3_a0
ER  - 
%0 Journal Article
%A R. H. Aramyan
%A A. G. Manucharyan
%T A representation for the support function of a convex body
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 3-7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_3_a0/
%G en
%F UZERU_2015_3_a0
R. H. Aramyan; A. G. Manucharyan. A representation for the support function of a convex body. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2015), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2015_3_a0/

[1] K. Leichtweiz, Konvexe Mengen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1980 | MR

[2] R. Schneider, “Uber Eine Integralgleichung in der Theorie der Konvexen Korper”, Math. Nachr., 44 (1970), 55–75 | DOI | MR | Zbl

[3] W. Wiel, R. Schneider, “Zonoids and Related Topics”, Convexity and its Applications, eds. P. Gruber, J. Wills, Birkhauser, Basel, 1983, 296–317 | MR

[4] R.H. Aramyan, “Measures in the Space of Planes and Convex Bodies”, Journal of Contemporary Mathematical Analysis, 47:2 (2012), 19–30 | DOI | MR | Zbl

[5] R.V. Ambartzumian, “Combinatorial Integral Geometry, Metrics and Zonoids”, Acta Appl. Math., 29 (1987), 3–27 | DOI | MR

[6] R.H. Aramyan, “Reconstruction of Centrally Symmetric Convex Bodies in ${\mathbf R}^n$”, Buletinul Acad. De Stiinte A R. Moldova. Mat., 65:1 (2011), 28–32 | MR | Zbl

[7] W. Blaschke, Kreis und Kugel, ed. 2nd, W. de Gruyter, Berlin, 1956 | MR | Zbl

[8] G.Yu. Panina, “Convex Bodies and Translation Invariant Measures”, Zap. Nauch. Sem. LOMI, 157, 1986, 143–152 (in Russian)

[9] Santalo L.A., Integral Geometry and Geometric Probability, Addison-Wesley Publishing Company Inc., Canada, 1976 | MR | Zbl

[10] R.H. Aramyan, “Flag Representations and Curvature Measures of a Convex Body”, Soviet Journal of Contemporary Mathematical Analysis, 23:1 (1988), 97–101 (in Russian) | MR | Zbl

[11] R.H. Aramyan, “On Stochastic Approximation of Convex Bodies”, Soviet Journal of Contemporary Mathematical Analysis, 22:5 (1987), 427–438 (in Russian) | MR | Zbl