On divergence of Fourier–Walsh series of continuous function
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 26-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that for any perfect set $P$ of positive measure, for which $0$ is a density point, one can construct a function $f(x)$ continuous on $[0,1)$ such that each measurable and bounded function, which coincides with $f(x)$ on the set $P$ has diverging Fourier–Walsh series at $0$.
Keywords: Fourier–Walsh series, continuous function
Mots-clés : divergence.
@article{UZERU_2015_2_a4,
     author = {S. A. Sargsyan},
     title = {On divergence of {Fourier{\textendash}Walsh} series of continuous function},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {26--29},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_2_a4/}
}
TY  - JOUR
AU  - S. A. Sargsyan
TI  - On divergence of Fourier–Walsh series of continuous function
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 26
EP  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_2_a4/
LA  - en
ID  - UZERU_2015_2_a4
ER  - 
%0 Journal Article
%A S. A. Sargsyan
%T On divergence of Fourier–Walsh series of continuous function
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 26-29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_2_a4/
%G en
%F UZERU_2015_2_a4
S. A. Sargsyan. On divergence of Fourier–Walsh series of continuous function. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 26-29. http://geodesic.mathdoc.fr/item/UZERU_2015_2_a4/

[1] D.E. Menshov, “On the Fourier Series of Continuous Functions”, Uch. Zapiski MGU. Matematika, 4 (1951), 108–132 (in Russian) | MR

[2] B.I Golubov, A.V. Efimov, V.A Skvortsov, Walsh Series and Transforms: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1991 | MR | Zbl