On divergence of Fourier–Walsh series of continuous function
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 26-29
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that for any perfect set $P$ of positive measure, for which $0$ is a density point, one can construct a function $f(x)$ continuous on $[0,1)$ such that each measurable and bounded function, which coincides with $f(x)$ on the set $P$ has diverging Fourier–Walsh series at $0$.
Keywords:
Fourier–Walsh series, continuous function
Mots-clés : divergence.
Mots-clés : divergence.
@article{UZERU_2015_2_a4,
author = {S. A. Sargsyan},
title = {On divergence of {Fourier{\textendash}Walsh} series of continuous function},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {26--29},
publisher = {mathdoc},
number = {2},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2015_2_a4/}
}
TY - JOUR AU - S. A. Sargsyan TI - On divergence of Fourier–Walsh series of continuous function JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2015 SP - 26 EP - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2015_2_a4/ LA - en ID - UZERU_2015_2_a4 ER -
S. A. Sargsyan. On divergence of Fourier–Walsh series of continuous function. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 26-29. http://geodesic.mathdoc.fr/item/UZERU_2015_2_a4/