On automorphisms of some periodic products of groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 7-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved, that if the order of a splitting automorphism of $n$-periodic product of cyclic groups of order $r$ is a power of some prime, then this automorphism is inner, where $n\geq 1003$ is odd and $r$ divides $n$. This is a generalization of the analogue result for free periodic groups.
Keywords: $n$-periodic product of groups, inner automorphism, free Burnside group.
Mots-clés : normal automorphism
@article{UZERU_2015_2_a1,
     author = {A. L. Gevorgyan and Sh. A. Stepanyan},
     title = {On automorphisms of some periodic products of groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {7--10},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_2_a1/}
}
TY  - JOUR
AU  - A. L. Gevorgyan
AU  - Sh. A. Stepanyan
TI  - On automorphisms of some periodic products of groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 7
EP  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_2_a1/
LA  - en
ID  - UZERU_2015_2_a1
ER  - 
%0 Journal Article
%A A. L. Gevorgyan
%A Sh. A. Stepanyan
%T On automorphisms of some periodic products of groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 7-10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_2_a1/
%G en
%F UZERU_2015_2_a1
A. L. Gevorgyan; Sh. A. Stepanyan. On automorphisms of some periodic products of groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 7-10. http://geodesic.mathdoc.fr/item/UZERU_2015_2_a1/

[1] O.H. Kegel, “Die Nilpotenz der Hp-Gruppen”, Math. Z., 75 (1961), 373–376 | DOI | MR | Zbl

[2] E.I. Khukhro, “Nilpotency of Solvable Groups Admitting a Splitting Automorphism of Prime Order”, Algebra and Logic, 19:1 (1980), 118–129 | DOI | MR | Zbl

[3] E. Jabara, “Groups Admitting a 4-Splitting Autmomorphism”, Rend. Circ. Mat. Palermo. II Ser., 45:1 (1996), 84–92 | DOI | MR | Zbl

[4] Math. Notes, 95:5 (2014), 586–589 | DOI | DOI | MR | Zbl

[5] Sb. Math., 204:1–2, 182–189 | DOI | MR | Zbl

[6] S.I. Adian, “Periodic Product of Groups. Number Theory, Mathematical Analysis and Their Applications”, Trudy Mat. Inst. Steklov, 142, 1976, 3–21 | MR

[7] A. L. Gevorgyan, “On automorphisms of periodic products of groups”, Proceedings of the YSU, Physics Mathematics, 2012, no. 2, 3–9 | Zbl