Pair of lines and maximal probability
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 3-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider two independent and identically distributed lines, which intersect a planar convex domain $\mathbf{D}.$ We evaluate the probability $P_ {\, \mathbf{D}},$ for the lines to intersect inside $\mathbf{D}$. Translation invariant measures generating random lines is obtained, under which $P_ {\mathbf{D}}$ achieves its maximum for a disc and a rectangle. It is also shown that for every $p$ from the interval $[0, 1/2]$ and for every square there are measures generating random lines such that $P_ {\, \mathbf{D}}=p.$
Keywords: random line, translation invariant measure.
Mots-clés : convex domain
@article{UZERU_2015_2_a0,
     author = {A. G. Gasparyan},
     title = {Pair of lines and maximal probability},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--6},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_2_a0/}
}
TY  - JOUR
AU  - A. G. Gasparyan
TI  - Pair of lines and maximal probability
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 3
EP  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_2_a0/
LA  - en
ID  - UZERU_2015_2_a0
ER  - 
%0 Journal Article
%A A. G. Gasparyan
%T Pair of lines and maximal probability
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 3-6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_2_a0/
%G en
%F UZERU_2015_2_a0
A. G. Gasparyan. Pair of lines and maximal probability. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 3-6. http://geodesic.mathdoc.fr/item/UZERU_2015_2_a0/

[1] L.A. Santalo, Integral Geometry and Geometric Probability, AddisionWesley, Reading(MA), 2004 | MR

[2] R.V. Ambartzumian, Factorization Calculus and Geometric Probability, Cambridge University Press, 1990 | MR | Zbl

[3] R. Schneider, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 61 (1982), 378–387 | DOI | MR