Pair of lines and maximal probability
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 3-6
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we consider two independent and identically distributed lines, which intersect a planar convex domain $\mathbf{D}.$ We evaluate the probability $P_ {\, \mathbf{D}},$ for the lines to intersect inside $\mathbf{D}$. Translation invariant measures generating random lines is obtained, under which $P_ {\mathbf{D}}$ achieves its maximum for a disc and a rectangle. It is also shown that for every $p$ from the interval $[0, 1/2]$ and for every square there are measures generating random lines such that $P_ {\, \mathbf{D}}=p.$
Keywords:
random line, translation invariant measure.
Mots-clés : convex domain
Mots-clés : convex domain
@article{UZERU_2015_2_a0,
author = {A. G. Gasparyan},
title = {Pair of lines and maximal probability},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--6},
year = {2015},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2015_2_a0/}
}
A. G. Gasparyan. Pair of lines and maximal probability. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2015), pp. 3-6. http://geodesic.mathdoc.fr/item/UZERU_2015_2_a0/
[1] L.A. Santalo, Integral Geometry and Geometric Probability, AddisionWesley, Reading(MA), 2004 | MR
[2] R.V. Ambartzumian, Factorization Calculus and Geometric Probability, Cambridge University Press, 1990 | MR | Zbl
[3] R. Schneider, Z. Wahrscheinlichkeitstheorie Verw. Gebiete, 61 (1982), 378–387 | DOI | MR