On minimal coset covering of solutions of a boolean equation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 26-30

Voir la notice de l'article provenant de la source Math-Net.Ru

For the equation $x_1x_2\dots x_n+x_{n+1}x_{n+2}\dots x_{2n}+x_{2n+1}x_{2n+2}\dots x_{3n}=1$ over the finite field $F_2$ we estimate the minimal number of systems of linear equations over the same field such that the union of their solutions exactly coincides with the set of solutions of the equation. We prove in this article that the number in the question is not greater than $9n^{\log_2^3}+4.$
Keywords: linear algebra, covering with cosets, blocking set.
@article{UZERU_2015_1_a5,
     author = {A. V. Minasyan},
     title = {On minimal coset covering of solutions of a boolean equation},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {26--30},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_1_a5/}
}
TY  - JOUR
AU  - A. V. Minasyan
TI  - On minimal coset covering of solutions of a boolean equation
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 26
EP  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_1_a5/
LA  - en
ID  - UZERU_2015_1_a5
ER  - 
%0 Journal Article
%A A. V. Minasyan
%T On minimal coset covering of solutions of a boolean equation
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 26-30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_1_a5/
%G en
%F UZERU_2015_1_a5
A. V. Minasyan. On minimal coset covering of solutions of a boolean equation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 26-30. http://geodesic.mathdoc.fr/item/UZERU_2015_1_a5/