On a solutions of one class of almost hypoelliptic equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 20-25
Cet article a éte moissonné depuis la source Math-Net.Ru
We prove, that if $P(D)=P(D_1,D_2)=\sum_{\alpha}\gamma_{\alpha} D_1^{\alpha_1}D_2^{\alpha_2}$ is an almost hypoelliptic regular operator, then for enough small $\delta>0$ all the solutions of the equation $P(D)u = 0$ from $L_{2,\delta} (R^2)$ are entire analytical functions.
Keywords:
almost hypoelliptic operator (polynom), weighted Sobolev spaces, analyticity of solution.
@article{UZERU_2015_1_a4,
author = {G. H. Hakobyan},
title = {On a solutions of one class of almost hypoelliptic equations},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {20--25},
year = {2015},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2015_1_a4/}
}
TY - JOUR AU - G. H. Hakobyan TI - On a solutions of one class of almost hypoelliptic equations JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2015 SP - 20 EP - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_2015_1_a4/ LA - en ID - UZERU_2015_1_a4 ER -
G. H. Hakobyan. On a solutions of one class of almost hypoelliptic equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 20-25. http://geodesic.mathdoc.fr/item/UZERU_2015_1_a4/