On a solutions of one class of almost hypoelliptic equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 20-25

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove, that if $P(D)=P(D_1,D_2)=\sum_{\alpha}\gamma_{\alpha} D_1^{\alpha_1}D_2^{\alpha_2}$ is an almost hypoelliptic regular operator, then for enough small $\delta>0$ all the solutions of the equation $P(D)u = 0$ from $L_{2,\delta} (R^2)$ are entire analytical functions.
Keywords: almost hypoelliptic operator (polynom), weighted Sobolev spaces, analyticity of solution.
@article{UZERU_2015_1_a4,
     author = {G. H. Hakobyan},
     title = {On a solutions of one class of almost hypoelliptic equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {20--25},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_1_a4/}
}
TY  - JOUR
AU  - G. H. Hakobyan
TI  - On a solutions of one class of almost hypoelliptic equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 20
EP  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_1_a4/
LA  - en
ID  - UZERU_2015_1_a4
ER  - 
%0 Journal Article
%A G. H. Hakobyan
%T On a solutions of one class of almost hypoelliptic equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 20-25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_1_a4/
%G en
%F UZERU_2015_1_a4
G. H. Hakobyan. On a solutions of one class of almost hypoelliptic equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 20-25. http://geodesic.mathdoc.fr/item/UZERU_2015_1_a4/