On a solutions of one class of almost hypoelliptic equations
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 20-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove, that if $P(D)=P(D_1,D_2)=\sum_{\alpha}\gamma_{\alpha} D_1^{\alpha_1}D_2^{\alpha_2}$ is an almost hypoelliptic regular operator, then for enough small $\delta>0$ all the solutions of the equation $P(D)u = 0$ from $L_{2,\delta} (R^2)$ are entire analytical functions.
Keywords: almost hypoelliptic operator (polynom), weighted Sobolev spaces, analyticity of solution.
@article{UZERU_2015_1_a4,
     author = {G. H. Hakobyan},
     title = {On a solutions of one class of almost hypoelliptic equations},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {20--25},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_1_a4/}
}
TY  - JOUR
AU  - G. H. Hakobyan
TI  - On a solutions of one class of almost hypoelliptic equations
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 20
EP  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_1_a4/
LA  - en
ID  - UZERU_2015_1_a4
ER  - 
%0 Journal Article
%A G. H. Hakobyan
%T On a solutions of one class of almost hypoelliptic equations
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 20-25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_1_a4/
%G en
%F UZERU_2015_1_a4
G. H. Hakobyan. On a solutions of one class of almost hypoelliptic equations. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 20-25. http://geodesic.mathdoc.fr/item/UZERU_2015_1_a4/

[1] Proc. Steklov Inst. Math., 91 (1967), 61–82 | MR | Zbl

[2] S. Gindikin, L. Volevich, The Method of Newtons Polyhedron in the Theory of PDE, Kluwer, 1992

[3] H.G. Kazaryan, “On Almost Hypoelliptic Polynomials”, Dokladi Akademii Nauk Rossii, 398:6 (2004), 701–703 (in Russian) | MR

[4] L Hörmander, The Analysis of Linear Parial Differential Operators, v. 2, Springer-Verlag, 1983

[5] H.G. Kazaryan, V.N. Margaryan, “On Solutions of Almost Hypoelliptic Equations in Weighted Sobolev Spaces”, Journal of Contemporary Mathematical Analysis, 45:4 (2010), 239–249 | DOI | MR

[6] V.I. Burenkov, “On Infinitely Differentiability and Analyticity of Solutions of Equation with Constant Coefficients”, DAN SSSR, 174:5 (1967), 1007–1010 (in Russian) | MR | Zbl

[7] H.G. Kazaryan, V.N. Margaryan, “On Gevrey Type Solutions of Hypoelliptic Equations”, Izvestia NAN Armenii. Matematika, 31:2 (1996), 33–47 (in Russian) | MR

[8] H.G. Kazaryan, V.N. Margaryan, “On a Class of Almost Hypoelliptic Operators”, J. of Contemporary Mathematical Analysis, 41:6 (2006), 39–56 | MR