Light propagation in metamaterial based anisotropic layer
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 61-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Light propagation (reflection, refraction and transmission) through homogeneous uniaxial medium layer with a finite thickness having double anisotropy (i.e. with anisotropy of both dielectric and magnetic permittivities) and an arbitrary orientation of its optical axis in the plane of incidence are investigated. Conditions when layer works as an omnidirectional reflector (independent from incident light polarization and angle) and also conditions for total transmission (independent from incident light polarization and for fixed incident angle) are considered. In purpose of getting laser cavity applications we have discussed certain case of anisotropic layer in which the light accumulation reaches two hundred times more than the intensity of incident light.
Keywords: dielectric permittivity, resonant frequency, piezoelectric crystals, inductance.
Mots-clés : capacitance
@article{UZERU_2015_1_a11,
     author = {M. S. Rafayelyan},
     title = {Light propagation in metamaterial based anisotropic layer},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {61--66},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_1_a11/}
}
TY  - JOUR
AU  - M. S. Rafayelyan
TI  - Light propagation in metamaterial based anisotropic layer
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 61
EP  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_1_a11/
LA  - en
ID  - UZERU_2015_1_a11
ER  - 
%0 Journal Article
%A M. S. Rafayelyan
%T Light propagation in metamaterial based anisotropic layer
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 61-66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_1_a11/
%G en
%F UZERU_2015_1_a11
M. S. Rafayelyan. Light propagation in metamaterial based anisotropic layer. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 61-66. http://geodesic.mathdoc.fr/item/UZERU_2015_1_a11/

[1] V.G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of $\varepsilon$ and $\mu$”, Sov. Phys. Usp., 10 (1968), 509 | DOI

[2] D.R. Smith, W.J. Padilla et al., “Composite Medium with Simultaneously Negative Permeability and Permittivity”, Phys. Rev. Lett., 84 (2000), 4148–87 | DOI

[3] R.A. Shelby, D.R. Smith, S. Schultz, “Experimental Verification of a Negative Index of Refraction”, Science, 292 (2001), 77–79 | DOI

[4] V.M. Shalaev, “Optical Negative-Index Metamaterials”, Nature Photonics, 1 (2007), 41–48 | DOI

[5] S.H. Lee, C.M. Park, Y.M. Seo, C.K. Kim, “Reversed Doppler Effect in Double Negative Metamaterials”, Phys. Rev. B, 81 (2010), 241102 | DOI

[6] J.B. Pendry, D. Schurig, D.R. Smith, “Controlling Electromagnetic Fields”, Science, 312 (2006), 1780–1782 | DOI | MR | Zbl

[7] A. Alu, N. Engheta, “Achieving Transparency with Plasmonic and Metamaterial Coatings”, Phys. Rev. E, 72 (2005), 016623–9 | DOI

[8] U. Leonhardt, “Optical Conformal Mapping”, Science, 312 (2006), 1770-1780 | DOI | MR

[9] N.I. Landy, S. Sajuyigbe, J.J. Mock, D.R. Smith, W.J. Padilla, “Perfect Metamaterial Absorber”, Phys. Rev. Lett., 100 (2008), 207402 | DOI

[10] D.R. Smith, D. Schurig, “Electromagnetic Wave Propagation in Media with Indefinite Permittivity and Permeability Tensors”, Phys. Rev. Lett., 90 (2003), 077405 | DOI

[11] P.A. Belov, “Backward Waves and Negative Refraction in Uniaxial Dielectrics with Negative Dielectric Permittivity Along the Anisotropy Axis”, Microwave and Optical Tech. Lett., 37 (2003), 259–262 | DOI

[12] N.H. Shen, Q. Wang, J. Chen et al., “Optically Uniaxial Left-Handed Materials”, Phys. Rev. B, 72 (2005), 153104 | DOI

[13] R.A. Depine, M.E. Inchaussandague, A. Lakhtakia, “Classification of Dispersion Equations for Homogeneous, Dielectric-Magnetic, Uniaxial Materials”, J. Opt. Soc. Amer. A, 23 (2006), 949–955 | DOI

[14] H. Luo, W. Hu, W. Shu, F. Li, Z. Ren, “Superluminal Group Velocity in an Anisotropic Metamaterialeurophys”, EPL, 74 (2006), 1081 | DOI

[15] Y.-J. Jen, A. Lakhtakia, C.-W. Yu, C.-T. Lin, “Negative Refraction in a Uniaxial Absorbent Dielectric Material”, Eur. J. Phys., 30 (2009), 1381–90 | DOI

[16] H. Chen, Sh. Xu, J. Li, “Omnidirectional Constant Transmission and Negative Brewster Angle at Planar Interfaces Associated with a Uniaxial Medium”, Opt. Express, 17 (2009), 19791-97 | DOI

[17] H. Liu, Q. Lv, H. Luo et al., “Focusing of Vectorial Fields by a Slab of Indefinite Media”, Journal of Optics A: Pure Appl. Opt., 11 (2009), 105103 | DOI

[18] V.A. Markel, J.C. Schotland, “On the Sign of Refraction in Anisotropic Non-Magnetic Media”, J. Opt., 12 (2010), 015104 | DOI

[19] Y. Xiang, X. Dai, S. Wen, “Total Reflection of Electromagnetic Waves Propagating from an Isotropic Medium to an Indefinite Metamaterial”, Opt. Commun., 274 (2007), 248–253 | DOI

[20] L. Yonghua, W. Pei, Y. Peijun, X. Jianping, M. Hai, “Negative Refraction at the Interface of Uniaxial Anisotropic Media”, Opt. Commun., 246 (2005), 429–435 | DOI

[21] J. Lekner, “Brewster Angles in Reflection by Uniaxial Crystals”, J. Opt. Soc. Amer A, 10 (1993), 2059–2064 | DOI

[22] S.H. Liu, L.-X. Guo, “Negative Refraction in an Anisotropic Metamaterial with a Rotation Angle Between the Principal Axis and the Planar Interface”, Progress in Electromagnetic Research, 115 (2011), 243–257 | DOI

[23] M.S. Rafayelyan, A.H. Gevorgyan, “Dispersion Surfaces and Light Propagation in Homogeneous Dielectric-Magnetic Uniaxial Medium”, Journal of Physics: Conference Series, 350 (2012), 12031 | DOI

[24] A.S. Barker, “Transverse and Longitudinal Optic Mode Study in $MgF_2$ and $ZnF_2$”, Phys. Rev., 136 (1964), A1290 | DOI

[25] A.H. Gevorgyan, A. Kocharian, G.A. Vardanyan, “Selective Diffraction Reflection in Helical Periodical Media with Large Anisotropy”, Mol. Cryst. Liq. Cryst., 432 (2005), 69–82 | DOI

[26] A.H. Gevorgyan, M.S. Rafayelyan, “Light Propagation in Anisotropic Metamaterials. II. Reflection from the Half-Space”, Journal of Contemporary Physics, 49 (2014), 12–19 | DOI

[27] A.H. Gevorgyan, M.S. Rafayelyan, “Light Propagation in Anisotropic Metamaterials. I. Dispersion Surfaces”, Journal of Contemporary Physics, 48 (2013), 276–284 | DOI

[28] M.S. Rafayelyan, A.H. Gevorgyan, “Plane Electromagnetic Waves in a Homogeneous Anisotropic Uniaxial Medium Having a Double Anisotropy and an Arbitrary Orientation of Its Optical Axis”, Proc. SPIE, 7998 (2010), K1–10

[29] J.P.Dowling, M. Scalora, M.J. Bloemer, C.M. Bowden, “The Photonic Band Edge Laser: A New Approach to Gain Enhancement”, J. Appl. Phys., 75 (1994), 1896–1899 | DOI

[30] A.H. Gevorgyan, K.B. Oganesyan, R.V. Karapetyan, M.S. Rafayelyan, “The Photonic Density of States and the Light Energy Density in Cholesteric Liquid Crystal Cells”, Laser Physics Letters, 10 (2013), 125802 | DOI

[31] A.H. Gevorgyan, M.S. Rafayelyan, “Optics of Anisotropic Metamaterial Based Structurally Chiral Photonic Crystals”, Journal of Optics, 15 (2013), 125103 | DOI