On the uniqueness of algebraic curves
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well-known that $N-1$ $n$-independent nodes uniquely determine curve of degree $n,$ where $N=(1/2)(n+1)(n+2).$ We are interested in finding the minimal number of $n$-independent nodes determining uniquely curve of degree $k\le n-1.$ In this paper we show that this number for $k=n-1$ is $N-4$.
Keywords: independent nodes, algebraic curves.
Mots-clés : polynomial interpolation
@article{UZERU_2015_1_a0,
     author = {V. H. Bayramyan and H. A. Hakopian and S. Z. Toroyan},
     title = {On the uniqueness of algebraic curves},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--7},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_1_a0/}
}
TY  - JOUR
AU  - V. H. Bayramyan
AU  - H. A. Hakopian
AU  - S. Z. Toroyan
TI  - On the uniqueness of algebraic curves
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 3
EP  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_1_a0/
LA  - en
ID  - UZERU_2015_1_a0
ER  - 
%0 Journal Article
%A V. H. Bayramyan
%A H. A. Hakopian
%A S. Z. Toroyan
%T On the uniqueness of algebraic curves
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 3-7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_1_a0/
%G en
%F UZERU_2015_1_a0
V. H. Bayramyan; H. A. Hakopian; S. Z. Toroyan. On the uniqueness of algebraic curves. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2015_1_a0/

[1] D. Eisenbud, M. Green, J. Harris, “Cayley–Bacharach Theorems and Conjectures”, Bull. Amer. Math. Soc. (N.S.), 33 (1996), 295–324 | DOI | MR

[2] H. Hakopian, A. Malinyan, “Characterization of $n$-Independent Sets with no More than $3n$ Points”, Jaen J. Approx., 4 (2012), 121–136 | MR

[3] H. Hakopian, K. Jetter, G. Zimmermann, “Vandermonde Matrices for Intersection Points of Curves”, Jaen J. Approx., 1 (2009), 67–81 | MR | Zbl

[4] L. Berzolari, “Sulla Determinazione di Una Curva o di Una Superficie Algebrica e su Alcune Questioni di Postulazione.”, Rend. del R. Ist. Lombardo di Scienze e Lettere, 47 (1914), 556–564

[5] J. Radon, “Zur Mechanischen Kubatur”, Monatsh. Math., 52 (1948), 286–300 | DOI | MR

[6] L. Rafayelyan, “Poised Nodes Set Constructions on Algebraic Curves”, East J. on Approx., 17 (2011), 285–298 | MR

[7] J.M. Carnicer, M. Gasca, “Planar Configurations with Simple Lagrange Interpolation Formulae”, Mathematical Methods in Curves and Surfaces: Oslo 2000, eds. T. Lyche, L.L. Schumaker, Vanderbilt University Press, Nashville, 2000, 55–62 | MR

[8] H. Hakopian, “Multivariate Divided Differences and Multivariate Interpolation of Lagrange and Hermite Type”, J. Approx. Theory, 34 (1982), 286–305 | DOI | MR | Zbl

[9] H. Hakopian, K. Jetter, G. Zimmermann, “The Gasca-Maeztu Conjecture for $n=5$”, Numer. Math., 127 (2014), 685–713 | DOI | MR | Zbl