On the uniqueness of algebraic curves
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 3-7
Voir la notice de l'article provenant de la source Math-Net.Ru
It is well-known that $N-1$ $n$-independent nodes uniquely determine curve of degree $n,$ where $N=(1/2)(n+1)(n+2).$ We are interested in finding the minimal number of $n$-independent nodes determining uniquely curve of degree $k\le n-1.$ In this paper we show that this number for $k=n-1$ is $N-4$.
Keywords:
independent nodes, algebraic curves.
Mots-clés : polynomial interpolation
Mots-clés : polynomial interpolation
@article{UZERU_2015_1_a0,
author = {V. H. Bayramyan and H. A. Hakopian and S. Z. Toroyan},
title = {On the uniqueness of algebraic curves},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--7},
publisher = {mathdoc},
number = {1},
year = {2015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2015_1_a0/}
}
TY - JOUR AU - V. H. Bayramyan AU - H. A. Hakopian AU - S. Z. Toroyan TI - On the uniqueness of algebraic curves JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2015 SP - 3 EP - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2015_1_a0/ LA - en ID - UZERU_2015_1_a0 ER -
%0 Journal Article %A V. H. Bayramyan %A H. A. Hakopian %A S. Z. Toroyan %T On the uniqueness of algebraic curves %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2015 %P 3-7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2015_1_a0/ %G en %F UZERU_2015_1_a0
V. H. Bayramyan; H. A. Hakopian; S. Z. Toroyan. On the uniqueness of algebraic curves. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2015_1_a0/