On the uniqueness of algebraic curves
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 3-7

Voir la notice de l'article provenant de la source Math-Net.Ru

It is well-known that $N-1$ $n$-independent nodes uniquely determine curve of degree $n,$ where $N=(1/2)(n+1)(n+2).$ We are interested in finding the minimal number of $n$-independent nodes determining uniquely curve of degree $k\le n-1.$ In this paper we show that this number for $k=n-1$ is $N-4$.
Keywords: independent nodes, algebraic curves.
Mots-clés : polynomial interpolation
@article{UZERU_2015_1_a0,
     author = {V. H. Bayramyan and H. A. Hakopian and S. Z. Toroyan},
     title = {On the uniqueness of algebraic curves},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--7},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2015_1_a0/}
}
TY  - JOUR
AU  - V. H. Bayramyan
AU  - H. A. Hakopian
AU  - S. Z. Toroyan
TI  - On the uniqueness of algebraic curves
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2015
SP  - 3
EP  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2015_1_a0/
LA  - en
ID  - UZERU_2015_1_a0
ER  - 
%0 Journal Article
%A V. H. Bayramyan
%A H. A. Hakopian
%A S. Z. Toroyan
%T On the uniqueness of algebraic curves
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2015
%P 3-7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2015_1_a0/
%G en
%F UZERU_2015_1_a0
V. H. Bayramyan; H. A. Hakopian; S. Z. Toroyan. On the uniqueness of algebraic curves. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2015), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2015_1_a0/