On the number of vertices with an interval spectrum in edge labeling of regular graphs
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 40-42
Cet article a éte moissonné depuis la source Math-Net.Ru
Undirected simple finite graphs are considered. An upper bound of the number of vertices with an interval spectrum is obtained for any edge labeling of an arbitrary regular graph.
Keywords:
edge labeling, interval spectrum, regular graph, cubic graph.
@article{UZERU_2014_3_a6,
author = {N. N. Davtyan and R. R. Kamalian},
title = {On the number of vertices with an interval spectrum in edge labeling of regular graphs},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {40--42},
year = {2014},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2014_3_a6/}
}
TY - JOUR AU - N. N. Davtyan AU - R. R. Kamalian TI - On the number of vertices with an interval spectrum in edge labeling of regular graphs JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2014 SP - 40 EP - 42 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_2014_3_a6/ LA - en ID - UZERU_2014_3_a6 ER -
%0 Journal Article %A N. N. Davtyan %A R. R. Kamalian %T On the number of vertices with an interval spectrum in edge labeling of regular graphs %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2014 %P 40-42 %N 3 %U http://geodesic.mathdoc.fr/item/UZERU_2014_3_a6/ %G en %F UZERU_2014_3_a6
N. N. Davtyan; R. R. Kamalian. On the number of vertices with an interval spectrum in edge labeling of regular graphs. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 40-42. http://geodesic.mathdoc.fr/item/UZERU_2014_3_a6/
[1] D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 1996 | MR | Zbl
[2] N.N. Davtyan, A.M. Khachatryan, R.R. Kamalian, “On A Subgraph Induced at a Labeling of a Graph by the Subset of Vertices with an Interval Spectrum”, Book of Abstracts of the 8th International Algebraic Conference in Ukraine, 2011, 61–62