On solvability of a class of nonlinear integral equations with Hammerstein type noncompact operator in the space $L_1(R^+)$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 16-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper a class of nonlinear integral equations on the positive semi axis with noncompact Hammerstein type operator is studied. The existence of nontrivial, nonnegative, integrable and bounded on $R^+$ solution is proved. Some specific examples of these equations representing independent interest are given.
Keywords: Hammerstein type equation, one-parameter family of solutions, Caratheodory condition, iteration.
Mots-clés : monotony
@article{UZERU_2014_3_a3,
     author = {Kh. A. Khachatryan and T. H. Sardaryan},
     title = {On solvability of a class of nonlinear integral equations with {Hammerstein} type noncompact operator in the space $L_1(R^+)$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {16--23},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_3_a3/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - T. H. Sardaryan
TI  - On solvability of a class of nonlinear integral equations with Hammerstein type noncompact operator in the space $L_1(R^+)$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 16
EP  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_3_a3/
LA  - en
ID  - UZERU_2014_3_a3
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A T. H. Sardaryan
%T On solvability of a class of nonlinear integral equations with Hammerstein type noncompact operator in the space $L_1(R^+)$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 16-23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_3_a3/
%G en
%F UZERU_2014_3_a3
Kh. A. Khachatryan; T. H. Sardaryan. On solvability of a class of nonlinear integral equations with Hammerstein type noncompact operator in the space $L_1(R^+)$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 16-23. http://geodesic.mathdoc.fr/item/UZERU_2014_3_a3/

[1] N.B. Engibaryan, “On a Problem in Nonlinear Radiative Transfer”, Astrophysics, 2:1 (1996), 12–14 | DOI | MR

[2] N.B. Engibaryan, A.Kh. Khachatryan, “On Nonlinear Theory Dynamics of Dilute Gas”, Matem. Mod., 16 (2004), 67–74 (in Russian) | MR | Zbl

[3] A.Kh. Khachatryan, Kh.A. Khachatryan, “Qualitative Difference Between Solutions for a Model of the Boltzmann Equation in the Linear and Nonlinear Cases”, Theoret. and Math. Phys., 172:3 (2012), 1315–1320 | DOI | MR | Zbl

[4] I.Y. Aref’eva, “Nonlocal String Tachyon as a Model For Cosmological Dark Energy”, AIP Conf. Proc., 826, 2006, 301–311 | MR | Zbl

[5] A. Khachatryan, Kh. Khachatryan, “On Solvability of a Nonlinear Problem in Theory of Income Distribution”, Eurasian Math. Journal, 2:2 (2011), 75–88 | MR | Zbl

[6] Kh.A. Khachatryan, “On a Class of Nonlinear Integral Equations with a Noncompact Operator.”, Journal of Contemporary Math. Analysis, 46:2 (2011), 89–100 | DOI | MR | Zbl

[7] V.S. Vladimirov, “The Equation of $p$-Adic Closed String for the Scalar Tachyon Field”, Science in China. Ser.A., Mathematics, 51:4 (2008), 754–764 | DOI | MR | Zbl

[8] L.G. Arabadzhyan, “Solution of an Integral Equation of Hammerstein Type”, Izvestia NAN Armenii, 32:1 (1997), 21–28 (in Russian) | MR | Zbl

[9] Kh.A. Khachatryan, “On a Class of Integral Equations of Urysohn Type with Strong Non-Linearity”, Izv. RAN. Ser. Mat., 76:1 (2012), 173–200 (in Russian) | DOI | MR | Zbl

[10] A.Kh. Khachatryan, Kh.A. Khachatryan, “On Solvability of One Class of Hammerstein Nonlinear Integral Equations”, Bul. Acad., Ştiintȩ Repub. Moldova, 2010, no. 2, 67–83 | MR | Zbl

[11] L.G. Arabadzhyan, N.B. Engibaryan, “Convolution Equations and Nonlinear Functional Equations”, Itogi Nauki i Tekhn., Ser. Mat. Anal., 22 (1984), 175–244 (in Russian) | MR | Zbl

[12] A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis, Nauka, M., 1981, 544 pp. (in Russian) | MR | Zbl