Topologies on the generalized plane
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 8-12
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper the topologies arising on the generalized plane $\Delta$ and its subsets are considered and their comparisons are investigated.
Keywords:
topological groups, Pontryagin duality, covering mappings.
@article{UZERU_2014_3_a1,
author = {A. F. Beknazaryan},
title = {Topologies on the generalized plane},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {8--12},
year = {2014},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2014_3_a1/}
}
A. F. Beknazaryan. Topologies on the generalized plane. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 8-12. http://geodesic.mathdoc.fr/item/UZERU_2014_3_a1/
[1] R. Arens, I.M. Singer, “Generalized Analytic Functions”, Trans. Amer. Math. Soc., 81:2 (1956), 379–393 | DOI | MR | Zbl
[2] S.A. Grigoryan, “Generalized Analytic Functions”, Uspekhi Mat. Nauk, 49:2 (1994), 3–43 (in Russian) | MR
[3] S.A. Grigoryan, “The Divisor of a Generalized Analytic Function”, Math. Notes, 61:5 (1997), 655–661 (in Russian) | MR | Zbl
[4] S.A. Morris, Pontryagin Duality and the Structure of Locally Compact Abelian Groups, Russian translation, Mir, M., 1980 | MR | Zbl
[5] R. Engelking, General Topology, Russian translation, Mir, M., 1986 | MR
[6] O. Forster, Riemann Surfaces, Russian translation, Mir, M., 1980 | MR