On a property of norming constants of Sturm–Liouville problem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 3-7.

Voir la notice de l'article provenant de la source Math-Net.Ru

A connection, which shows the dependence of norming constants on boundary conditions, was found using the Gelfand–Levitan method for the solution of inverse Sturm–Liouville problem.
Keywords: eigenvalues, norming constants.
Mots-clés : Sturm–Liouville problem
@article{UZERU_2014_3_a0,
     author = {Yu. A. Ashrafyan and T. N. Harutyunyan},
     title = {On a property of norming constants of {Sturm{\textendash}Liouville} problem},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--7},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_3_a0/}
}
TY  - JOUR
AU  - Yu. A. Ashrafyan
AU  - T. N. Harutyunyan
TI  - On a property of norming constants of Sturm–Liouville problem
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 3
EP  - 7
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_3_a0/
LA  - en
ID  - UZERU_2014_3_a0
ER  - 
%0 Journal Article
%A Yu. A. Ashrafyan
%A T. N. Harutyunyan
%T On a property of norming constants of Sturm–Liouville problem
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 3-7
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_3_a0/
%G en
%F UZERU_2014_3_a0
Yu. A. Ashrafyan; T. N. Harutyunyan. On a property of norming constants of Sturm–Liouville problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2014_3_a0/

[1] M.A. Naimark, Linear Differential Operators, Nauka, M., 1969 (in Russian) | MR

[2] I.M. Gel’fand, B.M. Levitan, “On the Determination of a Differential Equation from its Spectral Function”, Izv. Akad. Nauk. SSSR. Ser Mat., 15 (1951), 253–304 (in Russian) | MR

[3] V.A. Yurko, An Introductions to the Theory of Inverse Spectral Problems, Fizmatlit, M., 2007 (in Russian)

[4] E.L. Isaacson, E. Trubowitz, “The Inverse Sturm–Liouville Problem, I”, Com. Pure and Appl. Math., 36 (1983), 767–783 | DOI | MR | Zbl

[5] T.N. Harutyunyan, “Representation of the Norming Constants by Two Spectra”, Electronic Journal of Differential Equations, 2010, no. 159, 1–10 | MR