On a property of norming constants of Sturm–Liouville problem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 3-7
Cet article a éte moissonné depuis la source Math-Net.Ru
A connection, which shows the dependence of norming constants on boundary conditions, was found using the Gelfand–Levitan method for the solution of inverse Sturm–Liouville problem.
Keywords:
eigenvalues, norming constants.
Mots-clés : Sturm–Liouville problem
Mots-clés : Sturm–Liouville problem
@article{UZERU_2014_3_a0,
author = {Yu. A. Ashrafyan and T. N. Harutyunyan},
title = {On a property of norming constants of {Sturm{\textendash}Liouville} problem},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {3--7},
year = {2014},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2014_3_a0/}
}
TY - JOUR AU - Yu. A. Ashrafyan AU - T. N. Harutyunyan TI - On a property of norming constants of Sturm–Liouville problem JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2014 SP - 3 EP - 7 IS - 3 UR - http://geodesic.mathdoc.fr/item/UZERU_2014_3_a0/ LA - en ID - UZERU_2014_3_a0 ER -
%0 Journal Article %A Yu. A. Ashrafyan %A T. N. Harutyunyan %T On a property of norming constants of Sturm–Liouville problem %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2014 %P 3-7 %N 3 %U http://geodesic.mathdoc.fr/item/UZERU_2014_3_a0/ %G en %F UZERU_2014_3_a0
Yu. A. Ashrafyan; T. N. Harutyunyan. On a property of norming constants of Sturm–Liouville problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2014), pp. 3-7. http://geodesic.mathdoc.fr/item/UZERU_2014_3_a0/
[1] M.A. Naimark, Linear Differential Operators, Nauka, M., 1969 (in Russian) | MR
[2] I.M. Gel’fand, B.M. Levitan, “On the Determination of a Differential Equation from its Spectral Function”, Izv. Akad. Nauk. SSSR. Ser Mat., 15 (1951), 253–304 (in Russian) | MR
[3] V.A. Yurko, An Introductions to the Theory of Inverse Spectral Problems, Fizmatlit, M., 2007 (in Russian)
[4] E.L. Isaacson, E. Trubowitz, “The Inverse Sturm–Liouville Problem, I”, Com. Pure and Appl. Math., 36 (1983), 767–783 | DOI | MR | Zbl
[5] T.N. Harutyunyan, “Representation of the Norming Constants by Two Spectra”, Electronic Journal of Differential Equations, 2010, no. 159, 1–10 | MR