Nonselfadjoint degenerate differential operator equations of higher order on infinite interval
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2014), pp. 39-45
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper the Dirichlet problem for some class of degenerate nonselfadjoint differential operator equations of higher order on the infinite interval are considered.
Existence and uniqueness of the generalized solution of Dirichlet problem is proved, some analogue of the Keldysh theorem for the corresponding onedimensional operator is established.
Keywords:
differential equations in abstract spaces, degenerate differential operator equations, weighted Sobolev spaces.
@article{UZERU_2014_2_a4,
author = {S. Zschorn},
title = {Nonselfadjoint degenerate differential operator equations of higher order on infinite interval},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {39--45},
publisher = {mathdoc},
number = {2},
year = {2014},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2014_2_a4/}
}
TY - JOUR AU - S. Zschorn TI - Nonselfadjoint degenerate differential operator equations of higher order on infinite interval JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2014 SP - 39 EP - 45 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2014_2_a4/ LA - en ID - UZERU_2014_2_a4 ER -
%0 Journal Article %A S. Zschorn %T Nonselfadjoint degenerate differential operator equations of higher order on infinite interval %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2014 %P 39-45 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2014_2_a4/ %G en %F UZERU_2014_2_a4
S. Zschorn. Nonselfadjoint degenerate differential operator equations of higher order on infinite interval. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2014), pp. 39-45. http://geodesic.mathdoc.fr/item/UZERU_2014_2_a4/