Nonselfadjoint degenerate differential operator equations of higher order on infinite interval
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2014), pp. 39-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the Dirichlet problem for some class of degenerate nonselfadjoint differential operator equations of higher order on the infinite interval are considered. Existence and uniqueness of the generalized solution of Dirichlet problem is proved, some analogue of the Keldysh theorem for the corresponding onedimensional operator is established.
Keywords: differential equations in abstract spaces, degenerate differential operator equations, weighted Sobolev spaces.
@article{UZERU_2014_2_a4,
     author = {S. Zschorn},
     title = {Nonselfadjoint degenerate differential operator equations of higher order on infinite interval},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {39--45},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_2_a4/}
}
TY  - JOUR
AU  - S. Zschorn
TI  - Nonselfadjoint degenerate differential operator equations of higher order on infinite interval
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 39
EP  - 45
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_2_a4/
LA  - en
ID  - UZERU_2014_2_a4
ER  - 
%0 Journal Article
%A S. Zschorn
%T Nonselfadjoint degenerate differential operator equations of higher order on infinite interval
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 39-45
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_2_a4/
%G en
%F UZERU_2014_2_a4
S. Zschorn. Nonselfadjoint degenerate differential operator equations of higher order on infinite interval. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2014), pp. 39-45. http://geodesic.mathdoc.fr/item/UZERU_2014_2_a4/

[1] M.V. Keldysh, “On Certain Cases of Degeneration of Equations of Elliptic Type on the Boundary of a Domain”, Dokl. Akad. Nauk. SSSR, 77 (1951), 181–183 (in Russian) | MR

[2] A.A. Dezin, “Degenerate Operator Equations”, Mathematical Notes of the Academy of Sciences of the USSR, 43:3 (1982), 287–298 | MR | Zbl

[3] V.V. Kornienko, “On the Spectrum of Degenerate Operator Equations”, Mathematical Notes, 68:5 (2000), 576–587 | DOI | MR | Zbl

[4] L.P. Tepoyan, “Degenerate Fourth-Order Differential-Operator Equations”, Differential’nye Urawneniya, 23:8 (1987), 1366–1376 (in Russian) | MR | Zbl

[5] L.D. Kudryavtzev, “On Equivalent Norms in the Weighted Spaces”, Trudy Mat. Inst. AN SSSR, 170, 1984, 161–190 (in Russian) | MR

[6] L.P. Tepoyan, “Degenerate Differential-Operator Equations on Infinite Intervals”, J. of Mathematical Sciences, 189:1 (2013), 164–172 | DOI | MR | Zbl

[7] A.A. Dezin, Partial Differential Equations. An Introduction to a General Theory of Linear Boundary Value Problems, Springer, 1987 | MR | Zbl

[8] S.A. Osipova, L.P. Tepoyan, “On Euler Type Equation”, Proceedings of the YSU Physical and Mathematical Sciences, 2009, no. 1, 16–19

[9] V.I. Burenkov, Sobolev Spaces on Domains, Teubner, 1999 | MR