Nonselfadjoint degenerate differential equations of higher order
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2014), pp. 24-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we consider Dirichlet problem for some class of degenerate nonselfadjoint differential equations of higher order. We prove the existence and uniqueness of the generalized solution, establish analogue of the Keldysh theorem and explore the spectral properties of the corresponding operator.
Keywords: degenerate differential equations, weighted Sobolev spaces, spectral theory of linear operators.
@article{UZERU_2014_2_a2,
     author = {L. Tepoyan},
     title = {Nonselfadjoint degenerate differential equations of higher order},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {24--29},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_2_a2/}
}
TY  - JOUR
AU  - L. Tepoyan
TI  - Nonselfadjoint degenerate differential equations of higher order
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 24
EP  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_2_a2/
LA  - en
ID  - UZERU_2014_2_a2
ER  - 
%0 Journal Article
%A L. Tepoyan
%T Nonselfadjoint degenerate differential equations of higher order
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 24-29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_2_a2/
%G en
%F UZERU_2014_2_a2
L. Tepoyan. Nonselfadjoint degenerate differential equations of higher order. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2014), pp. 24-29. http://geodesic.mathdoc.fr/item/UZERU_2014_2_a2/

[1] M.V. Keldysh, “On Certain Cases of Degeneration of Equations of Elliptic Type on the Boundary of a Domain”, Dokl. Akad. Nauk. SSSR, 77 (1951), 181–183 (in Russian) | MR

[2] A.A. Dezin, “Degenerate Operator Equations”, Mathematical Notes of the Academy of Sciences of the USSR, 43:3 (1982), 287–298 | MR | Zbl

[3] V.V. Kornienko, “On the Spectrum of Degenerate Operator Equations”, Mathematical Notes, 68:5 (2000), 576–587 | DOI | MR | Zbl

[4] L.P. Tepoyan, “Degenerate Fourth-Order Differential-Operator Equations”, Differential’nye Urawneniya, 23:8 (1987), 1366–1376 (in Russian) | MR | Zbl

[5] L.P. Tepoyan, “Degenerate Differential-Operator Equations of Higher Order and Arbitrary Weight”, Asian-European Journal of Mathematics (AEJM), 5:2 (2012), 12500301–308 | MR

[6] A.A. Dezin, Partial Differential Equations. An Introduction to a General Theory of Linear Boundary Value Problems, Springer, 1987 | MR | Zbl

[7] V.I. Burenkov, Sobolev Spaces on Domains, Teubner, 1999 | MR

[8] L.P. Tepoyan, “On the Spectrum of a Degenerate Operator”, Journal of Contemporary Mathematical Analysis, 38:5 (2003), 53–57 | MR | Zbl

[9] L.D. Kudryavtzev, “On Equivalent Norms in the Weighted Spaces”, Trudy Mat. Inst. AN SSSR, 170, 1984, 161–190 (in Russian) | MR

[10] J. Weidmann, Lineare Operatoren in Hilbertraumen, v. 1, Grundlagen Teubner Verlag, Stuttgart, 2000 | MR