Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2014_1_a8, author = {H. E. Sargsyan}, title = {On a recursive approach to the solution of {MINLA} problem}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {48--50}, publisher = {mathdoc}, number = {1}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2014_1_a8/} }
TY - JOUR AU - H. E. Sargsyan TI - On a recursive approach to the solution of MINLA problem JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2014 SP - 48 EP - 50 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2014_1_a8/ LA - en ID - UZERU_2014_1_a8 ER -
H. E. Sargsyan. On a recursive approach to the solution of MINLA problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 48-50. http://geodesic.mathdoc.fr/item/UZERU_2014_1_a8/
[1] D.B. West, Introduction to Graph Theory, Prentice-Hall Inc., New Jersey, 1996, 512 pp. | MR | Zbl
[2] S. Even, Y. Shiloah, NP-Completeness of Several Arrangement Problems, Report 43, Technion-Dept. of Computer Science, Israel, Haifa, 1975
[3] H. E. Sargsyan, S. Y. Markosyan, “Minimum linear arrangement of the transitive oriented, bipartite graphs”, Proceedings of the YSU, Physics Mathematics, 2012, no. 2, 50–54 | Zbl
[4] L. Rafayelyan, “The Minimum Linear Arrangement Problem on Bipartite oriented Graphs”, Mathematical Problems of Computer Science, 32 (2009), p. 23–26