On a recursive approach to the solution of MINLA problem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 48-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper a recursive approach is suggested for the problem of Minimum Linear Arrangement (MINLA) of a graph by length. A minimality criterion of an arrangement is presented, from which a simple proof is obtained for the polynomial solvability of the problem in the class of bipartite, $\Gamma$ graphs.
Keywords: MINLA, graph linear arrangement, $\Gamma$-oriented graphs.
@article{UZERU_2014_1_a8,
     author = {H. E. Sargsyan},
     title = {On a recursive approach to the solution of {MINLA} problem},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {48--50},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_1_a8/}
}
TY  - JOUR
AU  - H. E. Sargsyan
TI  - On a recursive approach to the solution of MINLA problem
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 48
EP  - 50
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_1_a8/
LA  - en
ID  - UZERU_2014_1_a8
ER  - 
%0 Journal Article
%A H. E. Sargsyan
%T On a recursive approach to the solution of MINLA problem
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 48-50
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_1_a8/
%G en
%F UZERU_2014_1_a8
H. E. Sargsyan. On a recursive approach to the solution of MINLA problem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 48-50. http://geodesic.mathdoc.fr/item/UZERU_2014_1_a8/

[1] D.B. West, Introduction to Graph Theory, Prentice-Hall Inc., New Jersey, 1996, 512 pp. | MR | Zbl

[2] S. Even, Y. Shiloah, NP-Completeness of Several Arrangement Problems, Report 43, Technion-Dept. of Computer Science, Israel, Haifa, 1975

[3] H. E. Sargsyan, S. Y. Markosyan, “Minimum linear arrangement of the transitive oriented, bipartite graphs”, Proceedings of the YSU, Physics Mathematics, 2012, no. 2, 50–54 | Zbl

[4] L. Rafayelyan, “The Minimum Linear Arrangement Problem on Bipartite oriented Graphs”, Mathematical Problems of Computer Science, 32 (2009), p. 23–26