On Fourier coefficients with respect to the Walsh double system
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 22-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we will consider the behavior of Fourier coefficients with respect to the Walsh double system after modification of functions. We prove that for any function $f(x,y)\in L^p[0,1]^2$ one can find a function $g(x,y)\in L^p[0,1]^2$ coinciding with $f(x,y)$ except a set of small measure such that the non-zero coefficients of $g(x,y)$ are monotonically decreasing over all rays in absolute value.
Keywords: Walsh double system
Mots-clés : Fourier coefficients.
@article{UZERU_2014_1_a4,
     author = {A. B. Minasyan},
     title = {On {Fourier} coefficients with respect to the {Walsh} double system},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {22--25},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_1_a4/}
}
TY  - JOUR
AU  - A. B. Minasyan
TI  - On Fourier coefficients with respect to the Walsh double system
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 22
EP  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_1_a4/
LA  - en
ID  - UZERU_2014_1_a4
ER  - 
%0 Journal Article
%A A. B. Minasyan
%T On Fourier coefficients with respect to the Walsh double system
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 22-25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_1_a4/
%G en
%F UZERU_2014_1_a4
A. B. Minasyan. On Fourier coefficients with respect to the Walsh double system. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 22-25. http://geodesic.mathdoc.fr/item/UZERU_2014_1_a4/

[1] N.N. Lusin, Integral and Trigonometric Series, Gostekhizdat, M., 1951 (in Russian)

[2] D.E. Menchoff, “Sur la Representation des Fonctions Measurables des Series Trigonometriques”, Mat. Sbornik, 9 (1941), 667–693 | MR | Zbl

[3] M.G. Grigoryan, “Uniform Convergence of the Greedy Algorithm with Respect to the Walsh System”, Studia Math., 198:2 (2001), 197–206 | DOI | MR

[4] M.G. Grigoryan, “Modification of Functions, Fourier Coefficients and Nonlinear Approximation”, Sbornik: Math., 203:3 (2012), 351–379 | DOI | MR | Zbl

[5] A. Kh. Kobelyan, “On a property of general Haar system”, Proceedings of the YSU, Physics Mathematics, 2013, no. 3, 23–28 | Zbl

[6] R.E.A.C. Paley, “A Remarkable Set of Orthogonal Functions”, Proceedings of London Math. Soc., 34 (1932), 241–279 | DOI | MR | Zbl