On Fourier coefficients with respect to the Walsh double system
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 22-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper we will consider the behavior of Fourier coefficients with respect to the Walsh double system after modification of functions. We prove that for any function $f(x,y)\in L^p[0,1]^2$ one can find a function $g(x,y)\in L^p[0,1]^2$ coinciding with $f(x,y)$ except a set of small measure such that the non-zero coefficients of $g(x,y)$ are monotonically decreasing over all rays in absolute value.
Keywords: Walsh double system
Mots-clés : Fourier coefficients.
@article{UZERU_2014_1_a4,
     author = {A. B. Minasyan},
     title = {On {Fourier} coefficients with respect to the {Walsh} double system},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {22--25},
     year = {2014},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_1_a4/}
}
TY  - JOUR
AU  - A. B. Minasyan
TI  - On Fourier coefficients with respect to the Walsh double system
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 22
EP  - 25
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_1_a4/
LA  - en
ID  - UZERU_2014_1_a4
ER  - 
%0 Journal Article
%A A. B. Minasyan
%T On Fourier coefficients with respect to the Walsh double system
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 22-25
%N 1
%U http://geodesic.mathdoc.fr/item/UZERU_2014_1_a4/
%G en
%F UZERU_2014_1_a4
A. B. Minasyan. On Fourier coefficients with respect to the Walsh double system. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 22-25. http://geodesic.mathdoc.fr/item/UZERU_2014_1_a4/

[1] N.N. Lusin, Integral and Trigonometric Series, Gostekhizdat, M., 1951 (in Russian)

[2] D.E. Menchoff, “Sur la Representation des Fonctions Measurables des Series Trigonometriques”, Mat. Sbornik, 9 (1941), 667–693 | MR | Zbl

[3] M.G. Grigoryan, “Uniform Convergence of the Greedy Algorithm with Respect to the Walsh System”, Studia Math., 198:2 (2001), 197–206 | DOI | MR

[4] M.G. Grigoryan, “Modification of Functions, Fourier Coefficients and Nonlinear Approximation”, Sbornik: Math., 203:3 (2012), 351–379 | DOI | MR | Zbl

[5] A. Kh. Kobelyan, “On a property of general Haar system”, Proceedings of the YSU, Physics Mathematics, 2013, no. 3, 23–28 | Zbl

[6] R.E.A.C. Paley, “A Remarkable Set of Orthogonal Functions”, Proceedings of London Math. Soc., 34 (1932), 241–279 | DOI | MR | Zbl