Operator analogue of Bernstein theorem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 16-18
Cet article a éte moissonné depuis la source Math-Net.Ru
In this article obtained operator analogue of well-known S. Bernstein Theorem about approximation on the real axis of a bounded and uniformly continuous function by entire functions of Bernstein space.
Keywords:
Banach algebra, holomorphic by Lorch mapping.
@article{UZERU_2014_1_a2,
author = {H. A. Kamalyan},
title = {Operator analogue of {Bernstein} theorem},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {16--18},
year = {2014},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2014_1_a2/}
}
H. A. Kamalyan. Operator analogue of Bernstein theorem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 16-18. http://geodesic.mathdoc.fr/item/UZERU_2014_1_a2/
[1] W. Rudin, Functional Analaysis, New York-Sydney-Toronto, 1973
[2] E.R. Lorch, “The Theory of Analytic Functions in Normed Abelian Vector Rings”, Trans. Amer. Math. Soc., 54 (1943), 414–425 | DOI | MR | Zbl
[3] E. Hille, “Functional Analysis and Semi-Groups”, Trans. Amer. Math. Soc. Colloq. Publ., 31 (1957) | MR | Zbl
[4] W. Clickeld, “The Rieamann Sphere of a Commutative Banach Algebra”, Trans. Amer. Math. Soc., 134 (1968), 1–28 | DOI | MR
[5] N. Akhiezer, Lectures on Approximation Theory, Nauka, M., 1965 (in Russian)
[6] A.F. Timan, Theory of Approximation Functions of a Real Variable, Physical and Mathematical Literature, M., 1960 (in Russian) | MR