Operator analogue of Bernstein theorem
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 16-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article obtained operator analogue of well-known S. Bernstein Theorem about approximation on the real axis of a bounded and uniformly continuous function by entire functions of Bernstein space.
Keywords: Banach algebra, holomorphic by Lorch mapping.
@article{UZERU_2014_1_a2,
     author = {H. A. Kamalyan},
     title = {Operator analogue of {Bernstein} theorem},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {16--18},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_1_a2/}
}
TY  - JOUR
AU  - H. A. Kamalyan
TI  - Operator analogue of Bernstein theorem
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 16
EP  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_1_a2/
LA  - en
ID  - UZERU_2014_1_a2
ER  - 
%0 Journal Article
%A H. A. Kamalyan
%T Operator analogue of Bernstein theorem
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 16-18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_1_a2/
%G en
%F UZERU_2014_1_a2
H. A. Kamalyan. Operator analogue of Bernstein theorem. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 16-18. http://geodesic.mathdoc.fr/item/UZERU_2014_1_a2/

[1] W. Rudin, Functional Analaysis, New York-Sydney-Toronto, 1973

[2] E.R. Lorch, “The Theory of Analytic Functions in Normed Abelian Vector Rings”, Trans. Amer. Math. Soc., 54 (1943), 414–425 | DOI | MR | Zbl

[3] E. Hille, “Functional Analysis and Semi-Groups”, Trans. Amer. Math. Soc. Colloq. Publ., 31 (1957) | MR | Zbl

[4] W. Clickeld, “The Rieamann Sphere of a Commutative Banach Algebra”, Trans. Amer. Math. Soc., 134 (1968), 1–28 | DOI | MR

[5] N. Akhiezer, Lectures on Approximation Theory, Nauka, M., 1965 (in Russian)

[6] A.F. Timan, Theory of Approximation Functions of a Real Variable, Physical and Mathematical Literature, M., 1960 (in Russian) | MR