Surface plasmon polariton modes in a convex cylinder microresonator
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 61-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the formation of the surface plasmon polariton whispering gallery modes in the convex cylinder cavity. Developed theoretical model allows obtaining the closed-form expressions for the mode field distributions, resonant frequency, as well as the emitting and dissipative losses in the structure in a broad wavelength range. The obtained results give opportunity to find optimal conditions for efficient emission in convex cylinder cavity and serve as practical guidelines for stimulated emission.
Keywords: surface plasmon polariton, convex cylinder, field localization.
@article{UZERU_2014_1_a11,
     author = {V. A. Tekkozyan and A. Zh. Babajanyan and Kh. V. Nerkararyan and K. Lee},
     title = {Surface plasmon polariton modes in a convex cylinder microresonator},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {61--66},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_1_a11/}
}
TY  - JOUR
AU  - V. A. Tekkozyan
AU  - A. Zh. Babajanyan
AU  - Kh. V. Nerkararyan
AU  - K. Lee
TI  - Surface plasmon polariton modes in a convex cylinder microresonator
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 61
EP  - 66
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_1_a11/
LA  - en
ID  - UZERU_2014_1_a11
ER  - 
%0 Journal Article
%A V. A. Tekkozyan
%A A. Zh. Babajanyan
%A Kh. V. Nerkararyan
%A K. Lee
%T Surface plasmon polariton modes in a convex cylinder microresonator
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 61-66
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_1_a11/
%G en
%F UZERU_2014_1_a11
V. A. Tekkozyan; A. Zh. Babajanyan; Kh. V. Nerkararyan; K. Lee. Surface plasmon polariton modes in a convex cylinder microresonator. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 61-66. http://geodesic.mathdoc.fr/item/UZERU_2014_1_a11/

[1] K.V. Nerkararyan, “Superfocusing of a Surface Polariton in a Wedge-Like Structure”, Phys. Lett., A237 (1997), 103–105 | DOI

[2] D.K. Gramotnev, S.I. Bozhevolnyi, “Plasmonics Beyond the Diffraction Limit”, Nat. Photon., 4 (2010), 83–91 | DOI

[3] W.L. Barnes, A. Dereux, T.W. Ebbesen, “Surface Plasmon Sub-Wavelength Optics”, Nature, 424 (2003), 824–830 | DOI

[4] E. Ozbay, “Merging Photonics and Electronics at Nanoscale Dimensions Science”, Plasmonics, 311 (2006), 189–193

[5] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, “Single Molecule Detection Using Surface-Enhanced Raman Scattering”, Phys. Rev. Lett., 78 (1977), 1667–1670 | DOI

[6] S.M. Nie, S.R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering”, Science, 275 (1997), 1102–1106 | DOI

[7] S. Lal, S. Link, N.J. Halas, “Nano-optics from Sensing to Waveguiding”, Nat. Photon., 1 (2007), 641–648 | DOI

[8] J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, “Biosensing with Plasmonic Nanosensors”, Nat. Mater., 7 (2008), 442–453 | DOI

[9] D.A. Schultz, “Plasmon Resonant Particles for Biological Detection”, Curr. Opin. Biotechnol., 14 (2003), 13–22 | DOI

[10] H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, “Beaming Light from a Sub-wavelength Aperture”, Science, 297 (2002), 820–822 | DOI

[11] S.A. Maier, Plasmonics: Fundamentals and Applications, Springer, New York, 2007

[12] M. Ambati, S.H. Nam, E. Ulin-Avila, D.A. Genov, G. Bartal, X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons”, Nano Lett., 8 (2008), 3998–4001 | DOI

[13] M.T. Hill, Y.S. Oei, B. Smalbrugge, Y. Zhu, T. DeVries, P.J. Van Veldhoven, F.W.M. Van Otten, T.J. Eijkemans, J.P. Turkiewicz, H. De Waardt, E.J. Geluk, S.H. Kwon, Y.H. Lee, R. Notzel, M.K. Smit, “Lasingin Metallic-Coated Nanocavities”, Nat. Photon., 1 (2007), 589–594 | DOI

[14] R.F. Oulton, V.J. Sorger, T. Zentgraf, R.M. Ma, Ch. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon Lasers at Deep Sub-wavelength Scale”, Nature, 461 (2009), 629–632 | DOI

[15] D.J. Bergman, M.I. Stockman, “Surface Plasmon Amplification by Stimulated Emission of Radiation: Quantum Generation of Coherent Surface Plasmons in Nanosystems”, Phys. Rev. Lett., 90 (2003), 27402 | DOI

[16] K. Li, X. Li, M.I. Stockman, D.J. Bergman, “Surface Plasmon Amplification by Stimulated Emission in Nanolenses”, Phys. Rev., B71 (2005), 115409

[17] H. Altug, D. Englund, J. Vuckovic, “Ultrafast Photonic Crystal Nanocavity Laser”, Nat. Phys., 2 (2006), 484–488 | DOI

[18] J.C. Johnson, H.-J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally, “Single Gallium Nitride Nanowire Lasers”, Nat. Mater., 1 (2002), 106–110 | DOI

[19] X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, “Single-Nanowire Electrically Driven Lasers”, Nature, 421 (2003), 241–245 | DOI

[20] M.A. Zimmler, J. Bao, F. Capasso, S. Muller, C. Ronning, “Laser Action in Nanowires: Observation of the Transition from Amplified Spontaneous Emission to Laser Oscillation”, Appl. Phys. Lett., 93 (2008), 51101 | DOI

[21] V Tekkozyan., A. Babajanyan, Kh. Nerkararyan, “Analytic Description of Microcylindrical Cavity for Surface Plasmon Polariton”, Opt. Commun., 305 (2013), 190–193 | DOI