On zigzag De Morgan functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 3-6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are five precomplete classes of De Morgan functions, four of them are defined as sets of functions preserving some finitary relations. However, the fifth class – the class of zigzag De Morgan functions, is not defined by relations. In this paper we announce the following result: zigzag De Morgan functions can be defined as functions preserving some finitary relation.
Keywords: disjunctive (conjunctive) normal form of De Morgan function, closed and complete classes, quasimonotone and zigzag De Morgan functions.
@article{UZERU_2014_1_a0,
     author = {V. A. Aslanyan},
     title = {On zigzag {De} {Morgan} functions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--6},
     year = {2014},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_1_a0/}
}
TY  - JOUR
AU  - V. A. Aslanyan
TI  - On zigzag De Morgan functions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 3
EP  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_1_a0/
LA  - en
ID  - UZERU_2014_1_a0
ER  - 
%0 Journal Article
%A V. A. Aslanyan
%T On zigzag De Morgan functions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 3-6
%N 1
%U http://geodesic.mathdoc.fr/item/UZERU_2014_1_a0/
%G en
%F UZERU_2014_1_a0
V. A. Aslanyan. On zigzag De Morgan functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 3-6. http://geodesic.mathdoc.fr/item/UZERU_2014_1_a0/

[1] Yu.M. Movsisyan, V.A. Aslanyan, “A Functional Representation of Free De Morgan Algebras”, Proceedings of the YSU Physical Mathematical Sciences, 2012, no. 3, 14–16 | Zbl

[2] Y.Crama, P.L. Hammer, Boolean Functions: Theory, Algorithms and Applications, Cambridge University Press, NY, 2011 | MR | Zbl

[3] Yu.M. Movsisyan, V.A. Aslanyan, “A Functional Completeness Theorem for De Morgan Functions”, Discrete Applied Mathematics, 162 (2014), 1–16 | DOI | MR | Zbl

[4] Acad. Sci. Izv. Math., 40 (1993), 607–622 | DOI | MR

[5] Yu.M. Movsisyan,, “Algebras with Hyperidentities of the Variety of Boolean Algebras”, Izvestiya RAN: Ser. Mat., 60 (1996), 127–168 | DOI | MR | Zbl

[6] Yu.M. Movsisyan, V.A. Aslanyan, “Hyperidentities of De Morgan Algebras”, Logic Journal of IGPL, 20 (2012), 1153–1174 | DOI | MR | Zbl

[7] V.A. Aslanyan, “Characterization of Zigzag De Morgan Functions”, Discrete Mathematics Algorithms and Applications, 8:2, 1–16 | DOI