On zigzag De Morgan functions
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 3-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are five precomplete classes of De Morgan functions, four of them are defined as sets of functions preserving some finitary relations. However, the fifth class – the class of zigzag De Morgan functions, is not defined by relations. In this paper we announce the following result: zigzag De Morgan functions can be defined as functions preserving some finitary relation.
Keywords: disjunctive (conjunctive) normal form of De Morgan function, closed and complete classes, quasimonotone and zigzag De Morgan functions.
@article{UZERU_2014_1_a0,
     author = {V. A. Aslanyan},
     title = {On zigzag {De} {Morgan} functions},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--6},
     publisher = {mathdoc},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2014_1_a0/}
}
TY  - JOUR
AU  - V. A. Aslanyan
TI  - On zigzag De Morgan functions
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2014
SP  - 3
EP  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2014_1_a0/
LA  - en
ID  - UZERU_2014_1_a0
ER  - 
%0 Journal Article
%A V. A. Aslanyan
%T On zigzag De Morgan functions
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2014
%P 3-6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2014_1_a0/
%G en
%F UZERU_2014_1_a0
V. A. Aslanyan. On zigzag De Morgan functions. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2014), pp. 3-6. http://geodesic.mathdoc.fr/item/UZERU_2014_1_a0/

[1] Yu.M. Movsisyan, V.A. Aslanyan, “A Functional Representation of Free De Morgan Algebras”, Proceedings of the YSU Physical Mathematical Sciences, 2012, no. 3, 14–16 | Zbl

[2] Y.Crama, P.L. Hammer, Boolean Functions: Theory, Algorithms and Applications, Cambridge University Press, NY, 2011 | MR | Zbl

[3] Yu.M. Movsisyan, V.A. Aslanyan, “A Functional Completeness Theorem for De Morgan Functions”, Discrete Applied Mathematics, 162 (2014), 1–16 | DOI | MR | Zbl

[4] Acad. Sci. Izv. Math., 40 (1993), 607–622 | DOI | MR

[5] Yu.M. Movsisyan,, “Algebras with Hyperidentities of the Variety of Boolean Algebras”, Izvestiya RAN: Ser. Mat., 60 (1996), 127–168 | DOI | MR | Zbl

[6] Yu.M. Movsisyan, V.A. Aslanyan, “Hyperidentities of De Morgan Algebras”, Logic Journal of IGPL, 20 (2012), 1153–1174 | DOI | MR | Zbl

[7] V.A. Aslanyan, “Characterization of Zigzag De Morgan Functions”, Discrete Mathematics Algorithms and Applications, 8:2, 1–16 | DOI