On termination of functional symbol-free logic programs
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 49-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present article is devoted to the termination of logic programs, which do not use functional symbols ($FSF$ programs). A program $P$ is terminating with respect to a goal $G$, if the $SLD$-tree of $P$ and $G$ is finite. In general, $FSF$ programs are not terminating. A transformation is introduced, by which any $FSF$ program is transformed into another, not $FSF$ program, which is shown to be terminating with respect to the permitted goals of the original program. The program obtained via transformation and the original program are $\Delta$-equivalent.
Keywords: logic programming, functional symbol-free logic programs
Mots-clés : termination, transformation.
@article{UZERU_2013_3_a7,
     author = {S. A. Khachatryan},
     title = {On termination of functional symbol-free logic programs},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {49--56},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2013_3_a7/}
}
TY  - JOUR
AU  - S. A. Khachatryan
TI  - On termination of functional symbol-free logic programs
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2013
SP  - 49
EP  - 56
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2013_3_a7/
LA  - en
ID  - UZERU_2013_3_a7
ER  - 
%0 Journal Article
%A S. A. Khachatryan
%T On termination of functional symbol-free logic programs
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2013
%P 49-56
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2013_3_a7/
%G en
%F UZERU_2013_3_a7
S. A. Khachatryan. On termination of functional symbol-free logic programs. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 49-56. http://geodesic.mathdoc.fr/item/UZERU_2013_3_a7/

[1] L. Plümer, Termination Proofs for Logic Programs, Springer-Verlag, Berlin, 1990 | MR | Zbl

[2] J. D. Ullman, A. van Gelder, “Efficient Tests for Top-Down Termination of Logical Rules”, J. ACM, 35 (1988), 345–373 | DOI | MR

[3] S.A.Nigiyan, “The Prolog Interpreter from the Viewpoint of Logical Semantics”, Programming and Computer Software, 20:2 (1994), 69–75 | MR

[4] S.A. Nigiyan, L.O. Khachoyan, “On $A$-Equivalence of Logic Programs”, Doklady NAN Armenii, 99:2 (1999), 99–103 (in Russian) | MR

[5] L. Cavedon, “Acyclic Logic Programs and the Completeness of SLDNF-Resolution”, Theoretical Comput. Sci., 86 (1991), 81–92 | DOI | MR | Zbl

[6] M.A. Bezem, “Strong Termination of Logic Programs”, Journal of Logic Programming, 15:1–2 (1993), 79–97 | DOI | MR | Zbl

[7] J.W. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1984 | MR | Zbl

[8] U. Nilsson, J. Maluszski, Logic, Programming and PROLOG, ed. 2nd, John Wiley $\$ Sons, Inc., 1995

[9] S.A. Nigiyan, L.O. Khachoyan, “Transformations of Logic Programs”, Programming and Computer Software, 23:6 (1997), 302–309 | MR | Zbl

[10] N. Dershowitz, “Termination of Rewriting”, J. Symbolic Comput., 3 (1987), 69–116 | DOI | MR

[11] N.K. Vereshchagin, A. Shen', Lektsii po Matematicheskoy Logike i Teorii Algoritmov, v. 1, Nachala Teorii Mnojestv, 2nd edition, 2002 (in Russian)