Algebra of hyper-analytical functions as a $\beta$-uniform algebra
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 18-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper is devoted to the $\beta$-uniform algebra of bounded generalized analytic functions on the "generalized disk". The issues related to the well-known corona problem for this topological algebra are investigated.
Keywords: $\beta$-uniform, algebra, corona, "generalized disk”, topology.
@article{UZERU_2013_3_a2,
     author = {T. M. Khudoyan},
     title = {Algebra of hyper-analytical functions as a $\beta$-uniform algebra},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {18--22},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2013_3_a2/}
}
TY  - JOUR
AU  - T. M. Khudoyan
TI  - Algebra of hyper-analytical functions as a $\beta$-uniform algebra
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2013
SP  - 18
EP  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2013_3_a2/
LA  - en
ID  - UZERU_2013_3_a2
ER  - 
%0 Journal Article
%A T. M. Khudoyan
%T Algebra of hyper-analytical functions as a $\beta$-uniform algebra
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2013
%P 18-22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2013_3_a2/
%G en
%F UZERU_2013_3_a2
T. M. Khudoyan. Algebra of hyper-analytical functions as a $\beta$-uniform algebra. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 18-22. http://geodesic.mathdoc.fr/item/UZERU_2013_3_a2/

[1] T. Gamelin, The Uniform Algebras, Mir, M., 1975 (in Russian)

[2] S.A. Grigoryan, “Generalized Analytic Functions”, Uspekhi Matem. Nauk, 49:2(296) (1994), 3–42 | MR | Zbl

[3] T.V. Tonev, “The Banach Algebra of Bounded Hyper-Analytic Functions on the Big Disc”, Functions, Series, Operators, v. 2, Colloq. Math. Soc., Budapest, Hungary, 1980, 1189–1194 | MR

[4] T.V. Tonev, “The Algebra of Bounded Hyper-Analytic Functions on the Big Disc Has No Corona”, v. 798, Lecture Notes in Mathematics, Springer-Verlag, 1979, 435–438 | MR

[5] K. Hofman, Banach Spaces of Analytic Functions, Inostrannaya Literatura, M., 1975 (in Russian)

[6] R.C. Buck, “Bounded Continuous Functions on a Locally Compact Space”, Michigan Math. J., 5:2 (1958), 95–104 | DOI | MR | Zbl

[7] | DOI | MR | Zbl

[8] I.M. Gelfand, D.A. Raikov, G.E. Shilov, Commutative Normed Rings, Izd. Fiz.-Mat. Lit., M., 1960 | MR

[9] W. Rudin, Functional Analysis, Mir, M., 1975 (in Russian) | MR

[10] S.A. Grigoryan, M.I. Karakhanyan, T.A. Khor'kova, “On b-Uniform Dirichlet Algebras”, Journal of Cont. Math. Analysis, 45:6 (2010), 313–319 (in Russian) | DOI | MR