Solution of one Volterra type nonlinear integral equation on positive semi-axis
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 12-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is devoted to the investigation of one class of Volterra type nonlinear integral equations on positive half-line. The specified class of equations except for self-interest in mathematics has also important applications in physical kinetics. The combination of special factorization methods with methods of construction of invariant cone segments allows us to construct a non-negative solution of initial equation, and investigate integral asymptotics of that solution at infinity.
Keywords: factorization, Caratheodory’s condition, asymptotics.
@article{UZERU_2013_3_a1,
     author = {Kh. A. Khachatryan and T. H. Sardaryan},
     title = {Solution of one {Volterra} type nonlinear integral equation on positive semi-axis},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {12--17},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2013_3_a1/}
}
TY  - JOUR
AU  - Kh. A. Khachatryan
AU  - T. H. Sardaryan
TI  - Solution of one Volterra type nonlinear integral equation on positive semi-axis
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2013
SP  - 12
EP  - 17
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2013_3_a1/
LA  - en
ID  - UZERU_2013_3_a1
ER  - 
%0 Journal Article
%A Kh. A. Khachatryan
%A T. H. Sardaryan
%T Solution of one Volterra type nonlinear integral equation on positive semi-axis
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2013
%P 12-17
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2013_3_a1/
%G en
%F UZERU_2013_3_a1
Kh. A. Khachatryan; T. H. Sardaryan. Solution of one Volterra type nonlinear integral equation on positive semi-axis. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2013), pp. 12-17. http://geodesic.mathdoc.fr/item/UZERU_2013_3_a1/

[1] N.B. Engibaryan, A. Kh. Khachatryan, “On Nonlinear Theory Dynamics of Dilute Gas”, J. Mat. Mod., 16:1 (2004), 67–74 (in Russian) | MR | Zbl

[2] W. Feller, An Introduction to Probability Theory and its Applications, Mir, M., 1967, 752 pp. (in Russian) | MR

[3] N.K. Karapetyants, A.A. Kilbas, M. Saigo, “On the Solutions of Nonlinear Volterra Convolution Equation with Power Nonlinearity”, Journal of Integral Equations and Applications, 8:4 (1996), 429–445 | DOI | MR | Zbl

[4] M. Lauran, “Existence Results for Some Nonlinear Integral Equations”, Miskole Mathem. Notes, 13:1 (2012), 67–74 | MR | Zbl

[5] A.N. Kolmogorov, V.S. Fomin, Elements of the Theory of Functions and Functional Analysis, Nauka, M., 1981, 544 pp. (in Russian) | MR | Zbl