Mots-clés : Möbius, Djrbashian space.
@article{UZERU_2013_2_a3,
author = {G. V. Mikaelyan},
title = {M\"obius-invariant divisors for the space $A^p_{\alpha}$},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {22--27},
year = {2013},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2013_2_a3/}
}
G. V. Mikaelyan. Möbius-invariant divisors for the space $A^p_{\alpha}$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2013), pp. 22-27. http://geodesic.mathdoc.fr/item/UZERU_2013_2_a3/
[1] M.M. Djrbashian, “On Canonical Representation of Functions Meromorphic in the Unit Disc”, DAN Arm. SSR, 3:1 (1945), 3–9 (in Russian)
[2] M.M. Djrbashian, “On Representability Problem of Analytic Functions”, Soobsch. Inst. Matem. and Mech. AN Arm. SSR, 2 (1948), 3–40 (in Russian)
[3] G.V. Mikaelyan, “A Family of Blaschke Type Functions”, Izv. AN Arm. SSR. Mat., 25:6 (1990), 582–586 (in Russian) | MR | Zbl
[4] G.V. Mikaelyan, Z.S. Mikaelyan, “Weierstrass and Blaschke Type Functions”, Proceedings of the YSU, Phys. and Math. Sciences, 2010, no. 1, 3–8 | Zbl
[5] C. Horowitz, “Zeros of Functions in the Bergman Spaces”, Duke Math. J., 41 (1974), 693–710 | DOI | MR | Zbl
[6] B. Korenblum, “Unimodular Möbius-Invariant Contractive Divisors for the Bergman Space”, Operator Theory: Advansed and Aplications, 41, Birkhauser Verlag, Basel, 1989, 353–358 | MR
[7] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Springer Verlag, 2000 | MR | Zbl
[8] A.E. Djrbashian, F. A. Shamoyan, Topics in Theory of $A^p_{\alpha}$ Spaces, Teubner Verlag, Leipzig, 1988 | MR