M\"{o}bius-invariant divisors for the space $A^p_{\alpha}$
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2013), pp. 22-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we introduce new Möbius-invariant and efficient divisors for $A_{\alpha}^p$ spaces. The method of construction of new divisors is shown.
Keywords: divisor, infinite product, Blaschke
Mots-clés : Möbius, Djrbashian space.
@article{UZERU_2013_2_a3,
     author = {G. V. Mikaelyan},
     title = {M\"{o}bius-invariant divisors for the space $A^p_{\alpha}$},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {22--27},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2013_2_a3/}
}
TY  - JOUR
AU  - G. V. Mikaelyan
TI  - M\"{o}bius-invariant divisors for the space $A^p_{\alpha}$
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2013
SP  - 22
EP  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2013_2_a3/
LA  - en
ID  - UZERU_2013_2_a3
ER  - 
%0 Journal Article
%A G. V. Mikaelyan
%T M\"{o}bius-invariant divisors for the space $A^p_{\alpha}$
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2013
%P 22-27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2013_2_a3/
%G en
%F UZERU_2013_2_a3
G. V. Mikaelyan. M\"{o}bius-invariant divisors for the space $A^p_{\alpha}$. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2013), pp. 22-27. http://geodesic.mathdoc.fr/item/UZERU_2013_2_a3/

[1] M.M. Djrbashian, “On Canonical Representation of Functions Meromorphic in the Unit Disc”, DAN Arm. SSR, 3:1 (1945), 3–9 (in Russian)

[2] M.M. Djrbashian, “On Representability Problem of Analytic Functions”, Soobsch. Inst. Matem. and Mech. AN Arm. SSR, 2 (1948), 3–40 (in Russian)

[3] G.V. Mikaelyan, “A Family of Blaschke Type Functions”, Izv. AN Arm. SSR. Mat., 25:6 (1990), 582–586 (in Russian) | MR | Zbl

[4] G.V. Mikaelyan, Z.S. Mikaelyan, “Weierstrass and Blaschke Type Functions”, Proceedings of the YSU, Phys. and Math. Sciences, 2010, no. 1, 3–8 | Zbl

[5] C. Horowitz, “Zeros of Functions in the Bergman Spaces”, Duke Math. J., 41 (1974), 693–710 | DOI | MR | Zbl

[6] B. Korenblum, “Unimodular Möbius-Invariant Contractive Divisors for the Bergman Space”, Operator Theory: Advansed and Aplications, 41, Birkhauser Verlag, Basel, 1989, 353–358 | MR

[7] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Springer Verlag, 2000 | MR | Zbl

[8] A.E. Djrbashian, F. A. Shamoyan, Topics in Theory of $A^p_{\alpha}$ Spaces, Teubner Verlag, Leipzig, 1988 | MR