Bounded projectors on $L^p$ spaces in the unit ball
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2013), pp. 17-23

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the linear operators depending on normal pair of weight functions $\{\varphi,\psi\}$ in the Banach spaces $L^p(B)$. Here $B$ is the unit ball in the complex space $\mathbb{C}_n$. In particular, we study the question: for which values of $p$ these operators are bounded projectors.
Keywords: Banach space, holomorphic function, bounded projector.
Mots-clés : normal pair
@article{UZERU_2013_1_a3,
     author = {A. I. Petrosyan and N. Gapoyan},
     title = {Bounded projectors on $L^p$ spaces in the unit ball},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {17--23},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2013_1_a3/}
}
TY  - JOUR
AU  - A. I. Petrosyan
AU  - N. Gapoyan
TI  - Bounded projectors on $L^p$ spaces in the unit ball
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2013
SP  - 17
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2013_1_a3/
LA  - en
ID  - UZERU_2013_1_a3
ER  - 
%0 Journal Article
%A A. I. Petrosyan
%A N. Gapoyan
%T Bounded projectors on $L^p$ spaces in the unit ball
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2013
%P 17-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2013_1_a3/
%G en
%F UZERU_2013_1_a3
A. I. Petrosyan; N. Gapoyan. Bounded projectors on $L^p$ spaces in the unit ball. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2013), pp. 17-23. http://geodesic.mathdoc.fr/item/UZERU_2013_1_a3/