Voir la notice de l'article provenant de la source Math-Net.Ru
@article{UZERU_2013_1_a3, author = {A. I. Petrosyan and N. Gapoyan}, title = {Bounded projectors on $L^p$ spaces in the unit ball}, journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences}, pages = {17--23}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/UZERU_2013_1_a3/} }
TY - JOUR AU - A. I. Petrosyan AU - N. Gapoyan TI - Bounded projectors on $L^p$ spaces in the unit ball JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2013 SP - 17 EP - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2013_1_a3/ LA - en ID - UZERU_2013_1_a3 ER -
A. I. Petrosyan; N. Gapoyan. Bounded projectors on $L^p$ spaces in the unit ball. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2013), pp. 17-23. http://geodesic.mathdoc.fr/item/UZERU_2013_1_a3/
[1] A.L. Shields, D.L. Williams, “Bounded Projections, Duality, and Multipliers in Spaces of Analytic Functions”, Trans. Amer. Math. Soc., 162 (1971), 287–302 | MR
[2] A.I. Petrosyan, “Bounded Projectors in Spaces of Functions Holomorphic in the Unit Ball”, Journal of Contemporary Mathematical Analysis, 46:5 (2011), 264–272 | DOI | MR | Zbl
[3] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, Springer-Verlag, NY, 2004, 226 pp. | MR
[4] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Springer, 2000 | MR | Zbl
[5] A.I. Petrosyan, A.F. Beknazaryan, “On Bounded Operators in $L^p$ Spaces”, Proceedings of the Yerevan State University, Phys. and Math., 2011, no. 2, 11–16 | Zbl
[6] W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^n$, Springer-Verlag, NY, 1980 | MR