Bounded projectors on $L^p$ spaces in the unit ball
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2013), pp. 17-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper studies the linear operators depending on normal pair of weight functions $\{\varphi,\psi\}$ in the Banach spaces $L^p(B)$. Here $B$ is the unit ball in the complex space $\mathbb{C}_n$. In particular, we study the question: for which values of $p$ these operators are bounded projectors.
Keywords: Banach space, holomorphic function, bounded projector.
Mots-clés : normal pair
@article{UZERU_2013_1_a3,
     author = {A. I. Petrosyan and N. Gapoyan},
     title = {Bounded projectors on $L^p$ spaces in the unit ball},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {17--23},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2013_1_a3/}
}
TY  - JOUR
AU  - A. I. Petrosyan
AU  - N. Gapoyan
TI  - Bounded projectors on $L^p$ spaces in the unit ball
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2013
SP  - 17
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2013_1_a3/
LA  - en
ID  - UZERU_2013_1_a3
ER  - 
%0 Journal Article
%A A. I. Petrosyan
%A N. Gapoyan
%T Bounded projectors on $L^p$ spaces in the unit ball
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2013
%P 17-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2013_1_a3/
%G en
%F UZERU_2013_1_a3
A. I. Petrosyan; N. Gapoyan. Bounded projectors on $L^p$ spaces in the unit ball. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2013), pp. 17-23. http://geodesic.mathdoc.fr/item/UZERU_2013_1_a3/

[1] A.L. Shields, D.L. Williams, “Bounded Projections, Duality, and Multipliers in Spaces of Analytic Functions”, Trans. Amer. Math. Soc., 162 (1971), 287–302 | MR

[2] A.I. Petrosyan, “Bounded Projectors in Spaces of Functions Holomorphic in the Unit Ball”, Journal of Contemporary Mathematical Analysis, 46:5 (2011), 264–272 | DOI | MR | Zbl

[3] K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate Texts in Mathematics, Springer-Verlag, NY, 2004, 226 pp. | MR

[4] H. Hedenmalm, B. Korenblum, K. Zhu, Theory of Bergman Spaces, Springer, 2000 | MR | Zbl

[5] A.I. Petrosyan, A.F. Beknazaryan, “On Bounded Operators in $L^p$ Spaces”, Proceedings of the Yerevan State University, Phys. and Math., 2011, no. 2, 11–16 | Zbl

[6] W. Rudin, Function Theory in the Unit Ball of $\mathbb{C}^n$, Springer-Verlag, NY, 1980 | MR