On the continuity of extremal length
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2013), pp. 13-16
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper the continuity of one conformal invariant extremal length is considered. A counterexample is constructed disproving the result of P. M. Tamrazov on the continuity of the extremal distance between two sets. Then some sufficient conditions for the continuity are given.
Keywords:
extremal length, module of curve family, separated compact subset.
@article{UZERU_2013_1_a2,
author = {Kh. V. Navoyan and V. Kh. Navoyan},
title = {On the continuity of extremal length},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {13--16},
year = {2013},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2013_1_a2/}
}
Kh. V. Navoyan; V. Kh. Navoyan. On the continuity of extremal length. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2013), pp. 13-16. http://geodesic.mathdoc.fr/item/UZERU_2013_1_a2/
[1] F.W. Gehring, “A Remark on the Moduli of Rings”, Journal Comm. Math. Helv., 36 (1961), 42–46 | DOI | MR | Zbl
[2] V. Wolontis, “Properties of Conformal Invariants”, Amer. J. Math., 74 (1952), 587–606 | DOI | MR | Zbl
[3] L.V. Ahlfors, A. Beurling, “Conformal Invariants and Functiontheoretic Null-Sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl
[4] V.Kh. Navoian, “On Continuity the Spatial Capacitor Conformal Capacitance”, Ukrain. Mat. Z., 33:3 (1981), 421–426 (in Russian) | MR
[5] C. Loewner, “On the Conformal Capacity in Space”, J. Math. Mech., 8 (1959), 411–414 | MR | Zbl
[6] P.M. Tamrazov, “Continuity of Certain Conformal Invariants”, Ukrain. Mat. Z., 18:6 (1966), 78–84 (in Russian) | MR | Zbl