On the continuity of extremal length
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2013), pp. 13-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the continuity of one conformal invariant extremal length is considered. A counterexample is constructed disproving the result of P. M. Tamrazov on the continuity of the extremal distance between two sets. Then some sufficient conditions for the continuity are given.
Keywords: extremal length, module of curve family, separated compact subset.
@article{UZERU_2013_1_a2,
     author = {Kh. V. Navoyan and V. Kh. Navoyan},
     title = {On the continuity of extremal length},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {13--16},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2013_1_a2/}
}
TY  - JOUR
AU  - Kh. V. Navoyan
AU  - V. Kh. Navoyan
TI  - On the continuity of extremal length
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2013
SP  - 13
EP  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2013_1_a2/
LA  - en
ID  - UZERU_2013_1_a2
ER  - 
%0 Journal Article
%A Kh. V. Navoyan
%A V. Kh. Navoyan
%T On the continuity of extremal length
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2013
%P 13-16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2013_1_a2/
%G en
%F UZERU_2013_1_a2
Kh. V. Navoyan; V. Kh. Navoyan. On the continuity of extremal length. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2013), pp. 13-16. http://geodesic.mathdoc.fr/item/UZERU_2013_1_a2/

[1] F.W. Gehring, “A Remark on the Moduli of Rings”, Journal Comm. Math. Helv., 36 (1961), 42–46 | DOI | MR | Zbl

[2] V. Wolontis, “Properties of Conformal Invariants”, Amer. J. Math., 74 (1952), 587–606 | DOI | MR | Zbl

[3] L.V. Ahlfors, A. Beurling, “Conformal Invariants and Functiontheoretic Null-Sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl

[4] V.Kh. Navoian, “On Continuity the Spatial Capacitor Conformal Capacitance”, Ukrain. Mat. Z., 33:3 (1981), 421–426 (in Russian) | MR

[5] C. Loewner, “On the Conformal Capacity in Space”, J. Math. Mech., 8 (1959), 411–414 | MR | Zbl

[6] P.M. Tamrazov, “Continuity of Certain Conformal Invariants”, Ukrain. Mat. Z., 18:6 (1966), 78–84 (in Russian) | MR | Zbl