On one complete and minimal set of built-in constants for Backus $FP$ system
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 44-51.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper the completeness and the minimality of the set of the following built-in constants of Backus $FP$ system are proved:Identity, Head, Tail, Append left, Equals, Composition, Constuction, Condition, Constant.
Keywords: Backus $FP$ system, functional programming language, built-in constants, Turing completeness, minimality.
@article{UZERU_2012_3_a7,
     author = {G. A. Martirosyan},
     title = {On one complete and minimal set of built-in constants for {Backus} $FP$ system},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {44--51},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_3_a7/}
}
TY  - JOUR
AU  - G. A. Martirosyan
TI  - On one complete and minimal set of built-in constants for Backus $FP$ system
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 44
EP  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_3_a7/
LA  - en
ID  - UZERU_2012_3_a7
ER  - 
%0 Journal Article
%A G. A. Martirosyan
%T On one complete and minimal set of built-in constants for Backus $FP$ system
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 44-51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_3_a7/
%G en
%F UZERU_2012_3_a7
G. A. Martirosyan. On one complete and minimal set of built-in constants for Backus $FP$ system. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 44-51. http://geodesic.mathdoc.fr/item/UZERU_2012_3_a7/

[1] J. Backus, “Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its Algebra of Programs”, ACM Communications, 21:8 (1978), 613–641 | DOI | Zbl

[2] G. A. Martirosyan, “On minimality of one set of built-in functions for functional programming languages”, Proceedings of the YSU, Physics Mathematics, 2012, no. 2, 42–49 | Zbl

[3] S. A. Nigiyan, “Functional Languages”, Programming and Computer Software, 17 (1992), 290–297

[4] S. A. Nigiyan, “On Interpretation of Functional Programming Languages”, Programming and Computer Software, 19 (1993), 71–78 | MR

[5] G. A. Martirosyan, “Turing Completeness of Functional Programming Languages with One Set of Built-in Functions”, Proceeding of the Conference on Computer Science and Information Technologies (CSIT-2011), 2011, 370–373