On degenerate nonself-adjoint differential equations of fourth order
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 29-33

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the degenerate nonself-adjoint differential equation of fourth order $Lu\equiv(t^{\alpha}u^{\prime\prime})^{\prime\prime}+au^{\prime\prime\prime}-pu^{\prime}+qu=f$ where $t\in(0, b), \ 0\leq\alpha\leq 2, \alpha\neq 1, a, p, q $ are the constant numbers and $a\neq0, p>0, f\in L_2(0, b)$. We prove that the statement of the Dirichlet problem for the above equation depends on the sign of the number $a$ (Keldysh Teorem).
Keywords: Dirichlet problem, degenerate equations, weighted Sobolev spaces, spectral theory of linear operators.
@article{UZERU_2012_3_a5,
     author = {L. P. Tepoyan and H. S. Grigoryan},
     title = {On degenerate nonself-adjoint differential equations of fourth order},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {29--33},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_3_a5/}
}
TY  - JOUR
AU  - L. P. Tepoyan
AU  - H. S. Grigoryan
TI  - On degenerate nonself-adjoint differential equations of fourth order
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 29
EP  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_3_a5/
LA  - en
ID  - UZERU_2012_3_a5
ER  - 
%0 Journal Article
%A L. P. Tepoyan
%A H. S. Grigoryan
%T On degenerate nonself-adjoint differential equations of fourth order
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 29-33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_3_a5/
%G en
%F UZERU_2012_3_a5
L. P. Tepoyan; H. S. Grigoryan. On degenerate nonself-adjoint differential equations of fourth order. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 29-33. http://geodesic.mathdoc.fr/item/UZERU_2012_3_a5/