On degenerate nonself-adjoint differential equations of fourth order
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 29-33
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the degenerate nonself-adjoint differential equation of fourth order $Lu\equiv(t^{\alpha}u^{\prime\prime})^{\prime\prime}+au^{\prime\prime\prime}-pu^{\prime}+qu=f$ where $t\in(0, b), \ 0\leq\alpha\leq 2, \alpha\neq 1, a, p, q $ are the constant numbers and $a\neq0, p>0, f\in L_2(0, b)$. We prove that the statement of the Dirichlet problem for the above equation depends on the sign of the number $a$ (Keldysh Teorem).
Keywords:
Dirichlet problem, degenerate equations, weighted Sobolev spaces, spectral theory of linear operators.
@article{UZERU_2012_3_a5,
author = {L. P. Tepoyan and H. S. Grigoryan},
title = {On degenerate nonself-adjoint differential equations of fourth order},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {29--33},
publisher = {mathdoc},
number = {3},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2012_3_a5/}
}
TY - JOUR AU - L. P. Tepoyan AU - H. S. Grigoryan TI - On degenerate nonself-adjoint differential equations of fourth order JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2012 SP - 29 EP - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2012_3_a5/ LA - en ID - UZERU_2012_3_a5 ER -
%0 Journal Article %A L. P. Tepoyan %A H. S. Grigoryan %T On degenerate nonself-adjoint differential equations of fourth order %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2012 %P 29-33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2012_3_a5/ %G en %F UZERU_2012_3_a5
L. P. Tepoyan; H. S. Grigoryan. On degenerate nonself-adjoint differential equations of fourth order. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 29-33. http://geodesic.mathdoc.fr/item/UZERU_2012_3_a5/