Almost periodicity in spectral analysis representations induced by generalized shift operation
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 9-13

Voir la notice de l'article provenant de la source Math-Net.Ru

The famous Theorem of Yu. Lubich allows us in the language of the almost periodicity to get the criterion of completeness of the eigenvectors of a Hermitian compact operator in a weakly complete Banach space. In this paper this result is strengthened for the representation generated by the operation of the generalized shift.
Keywords: representations, generalized shift operations, almost periodicity.
@article{UZERU_2012_3_a1,
     author = {M. I. Karakhanian},
     title = {Almost periodicity in spectral analysis representations induced by generalized shift operation},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {9--13},
     publisher = {mathdoc},
     number = {3},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_3_a1/}
}
TY  - JOUR
AU  - M. I. Karakhanian
TI  - Almost periodicity in spectral analysis representations induced by generalized shift operation
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 9
EP  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_3_a1/
LA  - en
ID  - UZERU_2012_3_a1
ER  - 
%0 Journal Article
%A M. I. Karakhanian
%T Almost periodicity in spectral analysis representations induced by generalized shift operation
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 9-13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_3_a1/
%G en
%F UZERU_2012_3_a1
M. I. Karakhanian. Almost periodicity in spectral analysis representations induced by generalized shift operation. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 3 (2012), pp. 9-13. http://geodesic.mathdoc.fr/item/UZERU_2012_3_a1/