Code volume boundaries in the additive channel
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 14-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the problems in the theory of coding is the code building of a maximum volume for the proposed additive channel. In this paper we have found and consequently presented the upper and the lower bounds for the code volume, which corrects the errors of the additive channel.
Keywords: additive channel, upper and lower bounds, error-correcting.
@article{UZERU_2012_2_a2,
     author = {V. K. Leont'ev and G. L. Movsisyan and Zh. G. Margaryan},
     title = {Code  volume  boundaries  in  the  additive  channel},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {14--21},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_2_a2/}
}
TY  - JOUR
AU  - V. K. Leont'ev
AU  - G. L. Movsisyan
AU  - Zh. G. Margaryan
TI  - Code  volume  boundaries  in  the  additive  channel
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 14
EP  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_2_a2/
LA  - en
ID  - UZERU_2012_2_a2
ER  - 
%0 Journal Article
%A V. K. Leont'ev
%A G. L. Movsisyan
%A Zh. G. Margaryan
%T Code  volume  boundaries  in  the  additive  channel
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 14-21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_2_a2/
%G en
%F UZERU_2012_2_a2
V. K. Leont'ev; G. L. Movsisyan; Zh. G. Margaryan. Code  volume  boundaries  in  the  additive  channel. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 14-21. http://geodesic.mathdoc.fr/item/UZERU_2012_2_a2/

[1] M.E. Deza, “On Correcting of an Arbitrary Noise and the Worst Noise”, Theory of Information Transfer, Nauka, M., 1964, 26–31 (in Russian) | MR

[2] Problems Inform. Transmission, 1:3 (1965), 21–28 | MR | Zbl

[3] V.K. Leont’ev, G.L. Movsisyan, “On an additive communication channel”, Doklady NAS RA, 104:1 (2004), 23–27 (in Russian) | MR

[4] V.K. Leont'ev, G.L. Movsisyan, Zh.G. Margaryan, “Perfect Codes in Additive Channels”, Dokl. Akad. Nauk, 411:3 (2006), 306–308 (in Russian) | MR | Zbl

[5] Problems Inform. Transmission, 44:4 (2008), 295–302 | DOI | MR | Zbl

[6] V.K. Leont’ev, G.L. Movsisyan, Zh.G. Margaryan, “Codes in Additive Channels”, Doklady NAS RA 2010, 110:4 (in Russian) | MR

[7] Ph.G. McWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, Svyaz, M., 1979, 762 pp. (in Russian)