On automorphisms of periodic products of groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 3-9

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it has been proved that each normal automorphism of the $n$-periodic product of cyclic groups of odd order $r\geq1003$ is inner, whenever $r$ divides $ n$.
Keywords: $n$-periodic product of groups, normal, inner automorphism, free Burnside group.
Mots-clés : automorphism
@article{UZERU_2012_2_a0,
     author = {A. L. Gevorgyan},
     title = {On automorphisms of periodic products of groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--9},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_2_a0/}
}
TY  - JOUR
AU  - A. L. Gevorgyan
TI  - On automorphisms of periodic products of groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 3
EP  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_2_a0/
LA  - en
ID  - UZERU_2012_2_a0
ER  - 
%0 Journal Article
%A A. L. Gevorgyan
%T On automorphisms of periodic products of groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 3-9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_2_a0/
%G en
%F UZERU_2012_2_a0
A. L. Gevorgyan. On automorphisms of periodic products of groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 3-9. http://geodesic.mathdoc.fr/item/UZERU_2012_2_a0/