On automorphisms of periodic products of groups
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it has been proved that each normal automorphism of the $n$-periodic product of cyclic groups of odd order $r\geq1003$ is inner, whenever $r$ divides $ n$.
Keywords: $n$-periodic product of groups, normal, inner automorphism, free Burnside group.
Mots-clés : automorphism
@article{UZERU_2012_2_a0,
     author = {A. L. Gevorgyan},
     title = {On automorphisms of periodic products of groups},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {3--9},
     publisher = {mathdoc},
     number = {2},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_2_a0/}
}
TY  - JOUR
AU  - A. L. Gevorgyan
TI  - On automorphisms of periodic products of groups
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 3
EP  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_2_a0/
LA  - en
ID  - UZERU_2012_2_a0
ER  - 
%0 Journal Article
%A A. L. Gevorgyan
%T On automorphisms of periodic products of groups
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 3-9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_2_a0/
%G en
%F UZERU_2012_2_a0
A. L. Gevorgyan. On automorphisms of periodic products of groups. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 2 (2012), pp. 3-9. http://geodesic.mathdoc.fr/item/UZERU_2012_2_a0/

[1] Proc. Steklov Inst. Math., 142 (1979), 1–19 | MR | Zbl

[2] Math. Notes, 88:6 (2010), 771–775 | DOI | DOI | MR

[3] Proc. Steklov Inst. Math., 274 (2011), 9–24 | DOI | MR | Zbl

[4] V.S. Atabekyan, A.L. Gevorgyan, “On outer normal automorphisms of periodic products of groups”, Journal of Contemporary Math. Analysis, 46:6 (2011), 289—292 | DOI | MR | Zbl

[5] V.S. Atabekyan, “On $CEP$-subgroups of $n$-periodic products”, Journal of Contemporary Math. Analysis, 46:5 (2011), 237–242 | DOI | MR | Zbl

[6] A. Lubotzky, “Normal Automorphisms of Free Groups”, J. Algebra, 63:2 (1980), 494–498 | DOI | MR | Zbl

[7] V.A. Roman'kov, “Normal Automorphisms of Discrete Groups”, Siberian Mathematical Journal, 24:4 (1983,), 138–149 (in Russian) | MR | Zbl

[8] Ch.K. Gupta, N.S. Romanovsky, “Normal Automorphisms of a Free Pro-$p$-Group in the Variety $\mathcal{N_2 A}$”, Algebra i Logika, 35:3 (1996), 249–267 (in Russian) | DOI | MR | Zbl

[9] G. Endimioni, “Pointwise Inner Automorphisms in a Free Nilpotent Group”, Q. J. Math., 53:4 (2002), 397–402 | DOI | MR | Zbl

[10] O. Bogopolski, E. Kudryavtseva, H. Zieschang, “Simple Curves On Surfaces And An Analog Of A Theorem Of Magnus For Surface Groups”, Mathematische Zeitschrift, 247:3 (2004), 595—609 | DOI | MR | Zbl

[11] M. V. Neshchadim, “Free Products of Groups do not Have External Normal Automorphisms”, Algebra i Logika, 35:5 (1996), 562–566 (in Russian) | MR | Zbl

[12] A. Minasyan, D. Osin, “Normal Automorphisms of Relatively Hyperbolic Groups”, Transactions of the American Mathematical Society, 362:11 (2010), 6079—6103 (in Russian) | DOI | MR | Zbl

[13] Izv. Math., 75:2 (2011), 223–237 | DOI | DOI | MR | Zbl

[14] Math. USSR-Izv., 39:2 (1992), 905–957 | DOI | MR | Zbl

[15] J. Math. Sci., 166:6 (2010), 691–703 | DOI | MR | Zbl

[16] S.I. Adian, The Burnside Problem and Identities in Groups, Ergebnisse der Mathematik und Ihrer Grenzgebiete, 95, Springer-Verlag, Berlin-NY, 1979, 336 pp. | MR