Constant weight perfect and $D$-representable codes
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2012), pp. 16-19
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of the existence of non trivial constant weight perfect codes in the
$B^n$-space defined over $GF(2)$ remains unsolved up to now. It has been proved in the
present paper that the problem of the existence of constant weight perfect codes is
equivalent to the problem of the existence of $D$-representable codes in the fixed layer.
Keywords:
constant weight perfect codes, space splitting, Dirichlet regions, $D$-representable codes.
@article{UZERU_2012_1_a2,
author = {V. K. Leont'ev and G. L. Movsisyan and Zh. G. Margaryan},
title = {Constant weight perfect and $D$-representable codes},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {16--19},
publisher = {mathdoc},
number = {1},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2012_1_a2/}
}
TY - JOUR AU - V. K. Leont'ev AU - G. L. Movsisyan AU - Zh. G. Margaryan TI - Constant weight perfect and $D$-representable codes JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2012 SP - 16 EP - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/UZERU_2012_1_a2/ LA - en ID - UZERU_2012_1_a2 ER -
%0 Journal Article %A V. K. Leont'ev %A G. L. Movsisyan %A Zh. G. Margaryan %T Constant weight perfect and $D$-representable codes %J Proceedings of the Yerevan State University. Physical and mathematical sciences %D 2012 %P 16-19 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/UZERU_2012_1_a2/ %G en %F UZERU_2012_1_a2
V. K. Leont'ev; G. L. Movsisyan; Zh. G. Margaryan. Constant weight perfect and $D$-representable codes. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2012), pp. 16-19. http://geodesic.mathdoc.fr/item/UZERU_2012_1_a2/