Approximation by poised sets of nodes
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2012), pp. 60-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper it has been shown that nodes of any finite set $X\subset\mathbb{R}^d$ can be made independent by arbitrarily small perturbation, in other words, the set $X$ can be approximated by sets of independent nodes. In the case of $\#X=\mathrm{dim}\prod^d_n$ the set $X$ can be approximated by sets of poised nodes.
Keywords: independent points, poised sets.
Mots-clés : Lagrange interpolation
@article{UZERU_2012_1_a10,
     author = {G. S. Avagyan and L. R. Rafaelyan},
     title = {Approximation by poised sets of nodes},
     journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
     pages = {60--62},
     publisher = {mathdoc},
     number = {1},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UZERU_2012_1_a10/}
}
TY  - JOUR
AU  - G. S. Avagyan
AU  - L. R. Rafaelyan
TI  - Approximation by poised sets of nodes
JO  - Proceedings of the Yerevan State University. Physical and mathematical sciences
PY  - 2012
SP  - 60
EP  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UZERU_2012_1_a10/
LA  - en
ID  - UZERU_2012_1_a10
ER  - 
%0 Journal Article
%A G. S. Avagyan
%A L. R. Rafaelyan
%T Approximation by poised sets of nodes
%J Proceedings of the Yerevan State University. Physical and mathematical sciences
%D 2012
%P 60-62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UZERU_2012_1_a10/
%G en
%F UZERU_2012_1_a10
G. S. Avagyan; L. R. Rafaelyan. Approximation by poised sets of nodes. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2012), pp. 60-62. http://geodesic.mathdoc.fr/item/UZERU_2012_1_a10/

[1] I. P. Mysovskikh, Interpolation Cubature Formulas, Nauka, M., 1981, 33–-34 (in Russian) | MR