Approximation by poised sets of nodes
Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2012), pp. 60-62
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper it has been shown that nodes of any finite set $X\subset\mathbb{R}^d$ can be made independent by arbitrarily small perturbation, in other words, the set $X$ can be approximated by sets of independent nodes. In the case of $\#X=\mathrm{dim}\prod^d_n$ the set $X$ can be approximated by sets of poised nodes.
Keywords:
independent points, poised sets.
Mots-clés : Lagrange interpolation
Mots-clés : Lagrange interpolation
@article{UZERU_2012_1_a10,
author = {G. S. Avagyan and L. R. Rafaelyan},
title = {Approximation by poised sets of nodes},
journal = {Proceedings of the Yerevan State University. Physical and mathematical sciences},
pages = {60--62},
year = {2012},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UZERU_2012_1_a10/}
}
TY - JOUR AU - G. S. Avagyan AU - L. R. Rafaelyan TI - Approximation by poised sets of nodes JO - Proceedings of the Yerevan State University. Physical and mathematical sciences PY - 2012 SP - 60 EP - 62 IS - 1 UR - http://geodesic.mathdoc.fr/item/UZERU_2012_1_a10/ LA - en ID - UZERU_2012_1_a10 ER -
G. S. Avagyan; L. R. Rafaelyan. Approximation by poised sets of nodes. Proceedings of the Yerevan State University. Physical and mathematical sciences, no. 1 (2012), pp. 60-62. http://geodesic.mathdoc.fr/item/UZERU_2012_1_a10/
[1] I. P. Mysovskikh, Interpolation Cubature Formulas, Nauka, M., 1981, 33–-34 (in Russian) | MR